ABSTRACT
ABSTRACT: Selection of patients with NPM1-mutated acute myeloid leukemia (AML) for allogeneic transplant in first complete remission (CR1-allo) remains controversial because of a lack of robust data. Consequently, some centers consider baseline FLT3-internal tandem duplication (ITD) an indication for transplant, and others rely on measurable residual disease (MRD) status. Using prospective data from the United Kingdom National Cancer Research Institute AML17 and AML19 studies, we examined the impact of CR1-allo according to peripheral blood NPM1 MRD status measured by quantitative reverse transcription polymerase chain reaction after 2 courses of induction chemotherapy. Of 737 patients achieving remission, MRD was positive in 19%. CR1-allo was performed in 46% of MRD+ and 17% of MRD- patients. We observed significant heterogeneity of overall survival (OS) benefit from CR1-allo according to MRD status, with substantial OS advantage for MRD+ patients (3-year OS with CR1-allo vs without: 61% vs 24%; hazard ratio [HR], 0.39; 95% confidence interval [CI], 0.24-0.64; P < .001) but no benefit for MRD- patients (3-year OS with CR1-allo vs without: 79% vs 82%; HR, 0.82; 95% CI, 0.50-1.33; P = .4). Restricting analysis to patients with coexisting FLT3-ITD, again CR1-allo only improved OS for MRD+ patients (3-year OS, 45% vs 18%; compared with 83% vs 76% if MRD-); no interaction with FLT3 allelic ratio was observed. Postinduction molecular MRD reliably identifies those patients who benefit from allogeneic transplant in first remission. The AML17 and AML19 trials were registered at www.isrctn.com as #ISRCTN55675535 and #ISRCTN78449203, respectively.
Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Neoplasm, Residual , Nucleophosmin , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , fms-Like Tyrosine Kinase 3/genetics , Induction Chemotherapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Prospective Studies , Remission Induction , Transplantation, HomologousABSTRACT
ABSTRACT: Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.
Subject(s)
Leukemia, Myeloid, Acute , Mutation , Nuclear Proteins , Nucleophosmin , fms-Like Tyrosine Kinase 3 , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/drug therapy , Nuclear Proteins/genetics , Middle Aged , Female , Male , Adult , Aged , fms-Like Tyrosine Kinase 3/genetics , Prognosis , Young Adult , Neoplasm, Residual/genetics , DNA Methyltransferase 3A , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , WT1 Proteins/genetics , DNA (Cytosine-5-)-Methyltransferases/genetics , Adolescent , Treatment Outcome , Aged, 80 and overABSTRACT
Addition of gemtuzumab ozogamicin (GO) to induction chemotherapy improves outcomes in older patients with acute myeloid leukemia (AML), but it is uncertain whether a fractionated schedule provides additional benefit to a single dose. We randomized 852 older adults (median age, 68-years) with AML/high-risk myelodysplasia to GO on day 1 (GO1) or on days 1 and 4 (GO2) of course 1 induction. The median follow-up period was 50.2 months. Although complete remission (CR) rates after course 1 did not significantly differ between arms (GO2, 63%; GO1, 57%; odds ratio [OR], 0.78; P = .08), there were significantly more patients who achieved CR with a measurable residual disease (MRD)<0.1% (50% vs 41%; OR, 0.72; P = .027). This differential MRD reduction with GO2 varied across molecular subtypes, being greatest for IDH mutations. The 5-year overall survival (OS) was 29% for patients in the GO2 arm and 24% for those in the GO1 arm (hazard ratio [HR], 0.89; P = .14). In a sensitivity analysis excluding patients found to have adverse cytogenetics or TP53 mutations, the 5-year OS was 33% for GO2 and 26% for GO1 (HR, 0.83; P = .045). In total, 228 (27%) patients received an allogeneic transplantation in first remission. Posttransplant OS was superior in the GO2 arm (HR, 0.67; P = .033); furthermore, the survival advantage from GO2 in the sensitivity analysis was lost when data of patients were censored at transplantation. In conclusion, GO2 was associated with a greater reduction in MRD and improved survival in older adults with nonadverse risk genetics. This benefit from GO2 was dependent on allogeneic transplantation to translate the better leukemia clearance into improved survival. This trial was registered at www.isrctn.com as #ISRCTN 31682779.
Subject(s)
Daunorubicin , Leukemia, Myeloid, Acute , Humans , Aged , Gemtuzumab/therapeutic use , Antibodies, Monoclonal, Humanized , Cytarabine , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , United Kingdom , Aminoglycosides , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
NPM 1-mutated acute myeloid leukemia (AML) shows unique features. However, the characteristics of "therapy-related" NPM1-mutated AML (t-NPM1 AML) are poorly understood. We compared the genetics, transcriptional profile, and clinical outcomes of t-NPM1 AML, de novo NPM1-mutated AML (dn-NPM1 AML), and therapy-related AML (t-AML) with wild-type NPM1 (t-AML). Normal karyotype was more frequent in t-NPM1 AML (n = 78/96, 88%) and dn-NPM1 (n = 1986/2394, 88%) than in t-AML (n = 103/390, 28%; P < .001). DNMT3A and TET2 were mutated in 43% and 40% of t-NPM1 AML (n = 107), similar to dn-NPM1 (n = 88, 48% and 30%; P > 0.1), but more frequently than t-AML (n = 162; 14% and 10%; P < 0.001). Often mutated in t-AML, TP53 and PPM1D were wild-type in 97% and 96% of t-NPM1 AML, respectively. t-NPM1 and dn-NPM1 AML were transcriptionally similar, (including HOX genes upregulation). At 62 months of median follow-up, the 3-year overall survival (OS) for t-NPM1 AML (n = 96), dn-NPM1 AML (n = 2394), and t-AML (n = 390) were 54%, 60%, and 31%, respectively. In multivariable analysis, OS was similar for the NPM1-mutated groups (hazard ratio [HR] 0.9; 95% confidence interval [CI], 0.65-1.25; P = .45), but better in t-NPM1 AML than in t-AML (HR, 1.86; 95% CI, 1.30-2.68; P < .001). Relapse-free survival was similar between t-NPM1 and dn-NPM1 AML (HR, 1.02; 95% CI, 0.72-1.467; P = .90), but significantly higher in t-NPM1 AML versus t-AML (HR, 1.77; 95% CI, 1.19-2.64; P = .0045). t-NPM1 and dn-NPM1 AML have overlapping features, suggesting that they should be classified as a single disease entity.
Subject(s)
Leukemia, Myeloid, Acute , Nuclear Proteins , Humans , Nuclear Proteins/genetics , Nucleophosmin , Mutation , Prognosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapyABSTRACT
Induction therapy for acute myeloid leukaemia (AML) has changed with the approval of a number of new agents. Clinical guidelines can struggle to keep pace with an evolving treatment and evidence landscape and therefore identifying the most appropriate front-line treatment is challenging for clinicians. Here, we combined drug eligibility criteria and genetic risk stratification into a digital format, allowing the full range of possible treatment eligibility scenarios to be defined. Using exemplar cases representing each of the 22 identified scenarios, we sought to generate consensus on treatment choice from a panel of nine aUK AML experts. We then analysed >2500 real-world cases using the same algorithm, confirming the existence of 21/22 of these scenarios and demonstrating that our novel approach could generate a consensus AML induction treatment in 98% of cases. Our approach, driven by the use of decision trees, is an efficient way to develop consensus guidance rapidly and could be applied to other disease areas. It has the potential to be updated frequently to capture changes in eligibility criteria, novel therapies and emerging trial data. An interactive digital version of the consensus guideline is available.
Subject(s)
Leukemia, Myeloid, Acute , Adult , Consensus , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapyABSTRACT
Relapse remains the most common cause of treatment failure for patients with acute myeloid leukemia (AML) who undergo allogeneic stem cell transplantation (alloSCT), and carries a grave prognosis. Multiple studies have identified the presence of measurable residual disease (MRD) assessed by flow cytometry before alloSCT as a strong predictor of relapse, but it is not clear how these findings apply to patients who test positive in molecular MRD assays, which have far greater sensitivity. We analyzed pretransplant blood and bone marrow samples by reverse-transcription polymerase chain reaction in 107 patients with NPM1-mutant AML enrolled in the UK National Cancer Research Institute AML17 study. After a median follow-up of 4.9 years, patients with negative, low (<200 copies per 105ABL in the peripheral blood and <1000 copies in the bone marrow aspirate), and high levels of MRD had an estimated 2-year overall survival (2y-OS) of 83%, 63%, and 13%, respectively (P < .0001). Focusing on patients with low-level MRD before alloSCT, those with FLT3 internal tandem duplications(ITDs) had significantly poorer outcome (hazard ratio [HR], 6.14; P = .01). Combining these variables was highly prognostic, dividing patients into 2 groups with 2y-OS of 17% and 82% (HR, 13.2; P < .0001). T-depletion was associated with significantly reduced survival both in the entire cohort (2y-OS, 56% vs 96%; HR, 3.24; P = .0005) and in MRD-positive patients (2y-OS, 34% vs 100%; HR, 3.78; P = .003), but there was no significant effect of either conditioning regimen or donor source on outcome. Registered at ISRCTN (http://www.isrctn.com/ISRCTN55675535).
Subject(s)
Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Neoplasm, Residual , Nuclear Proteins/genetics , Adolescent , Adult , Aged , Female , Hematopoietic Stem Cell Transplantation/mortality , Humans , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/mortality , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Nucleophosmin , Recurrence , Young AdultABSTRACT
Treatment of relapsed/resistant acute myeloid leukaemia (AML) remains a significant area of unmet patient need, the outlook for most patients remaining extremely poor. A promising approach is to augment the anti-tumour immune response in these patients; most cancers do not activate immune effector cells because they express immunosuppressive ligands. We have previously shown that CD200 (an immunosuppressive ligand) is overexpressed in AML and confers an inferior overall survival compared to CD200low/neg patients. Here we show that a fully human anti-CD200 antibody (TTI-CD200) can block the interaction of CD200 with its receptor and restore AML immune responses in vitro and in vivo.
Subject(s)
Antibodies, Blocking/immunology , Antigens, CD/immunology , Antineoplastic Agents, Immunological/therapeutic use , Immunity/immunology , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Animals , Antibodies, Blocking/pharmacology , Antigens, CD/drug effects , Case-Control Studies , Cytokine-Induced Killer Cells/immunology , Humans , Immunity/drug effects , Immunosuppression Therapy/methods , Leukemia, Myeloid, Acute/mortality , Ligands , Mice , Models, Animal , Secondary Prevention/methods , Transplantation, Heterologous/methodsABSTRACT
BACKGROUND: Despite the molecular heterogeneity of standard-risk acute myeloid leukemia (AML), treatment decisions are based on a limited number of molecular genetic markers and morphology-based assessment of remission. Sensitive detection of a leukemia-specific marker (e.g., a mutation in the gene encoding nucleophosmin [NPM1]) could improve prognostication by identifying submicroscopic disease during remission. METHODS: We used a reverse-transcriptase quantitative polymerase-chain-reaction assay to detect minimal residual disease in 2569 samples obtained from 346 patients with NPM1-mutated AML who had undergone intensive treatment in the National Cancer Research Institute AML17 trial. We used a custom 51-gene panel to perform targeted sequencing of 223 samples obtained at the time of diagnosis and 49 samples obtained at the time of relapse. Mutations associated with preleukemic clones were tracked by means of digital polymerase chain reaction. RESULTS: Molecular profiling highlighted the complexity of NPM1-mutated AML, with segregation of patients into more than 150 subgroups, thus precluding reliable outcome prediction. The determination of minimal-residual-disease status was more informative. Persistence of NPM1-mutated transcripts in blood was present in 15% of the patients after the second chemotherapy cycle and was associated with a greater risk of relapse after 3 years of follow-up than was an absence of such transcripts (82% vs. 30%; hazard ratio, 4.80; 95% confidence interval [CI], 2.95 to 7.80; P<0.001) and a lower rate of survival (24% vs. 75%; hazard ratio for death, 4.38; 95% CI, 2.57 to 7.47; P<0.001). The presence of minimal residual disease was the only independent prognostic factor for death in multivariate analysis (hazard ratio, 4.84; 95% CI, 2.57 to 9.15; P<0.001). These results were validated in an independent cohort. On sequential monitoring of minimal residual disease, relapse was reliably predicted by a rising level of NPM1-mutated transcripts. Although mutations associated with preleukemic clones remained detectable during ongoing remission after chemotherapy, NPM1 mutations were detected in 69 of 70 patients at the time of relapse and provided a better marker of disease status. CONCLUSIONS: The presence of minimal residual disease, as determined by quantitation of NPM1-mutated transcripts, provided powerful prognostic information independent of other risk factors. (Funded by Bloodwise and the National Institute for Health Research; Current Controlled Trials number, ISRCTN55675535.).
Subject(s)
Leukemia, Myeloid, Acute/genetics , Mutation , Nuclear Proteins/genetics , Base Sequence , DNA, Neoplasm/analysis , Exome , Gene Expression Profiling , Humans , Molecular Sequence Data , Neoplasm, Residual/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Prognosis , Recurrence , Reverse Transcriptase Polymerase Chain Reaction , Risk Factors , TranscriptomeABSTRACT
The clinical benefit of adding FMS-like tyrosine kinase-3 (FLT3)-directed small molecule therapy to standard first-line treatment of acute myeloid leukemia (AML) has not yet been established. As part of the UK AML15 and AML17 trials, patients with previously untreated AML and confirmed FLT3-activating mutations, mostly younger than 60 years, were randomly assigned either to receive oral lestaurtinib (CEP701) or not after each of 4 cycles of induction and consolidation chemotherapy. Lestaurtinib was commenced 2 days after completing chemotherapy and administered in cycles of up to 28 days. The trials ran consecutively. Primary endpoints were overall survival in AML15 and relapse-free survival in AML17; outcome data were meta-analyzed. Five hundred patients were randomly assigned between lestaurtinib and control: 74% had FLT3-internal tandem duplication mutations, 23% FLT3-tyrosine kinase domain point mutations, and 2% both types. No significant differences were seen in either 5-year overall survival (lestaurtinib 46% vs control 45%; hazard ratio, 0.90; 95% CI 0.70-1.15; P = .3) or 5-year relapse-free survival (40% vs 36%; hazard ratio, 0.88; 95% CI 0.69-1.12; P = .3). Exploratory subgroup analysis suggested survival benefit with lestaurtinib in patients receiving concomitant azole antifungal prophylaxis and gemtuzumab ozogamicin with the first course of chemotherapy. Correlative studies included analysis of in vivo FLT3 inhibition by plasma inhibitory activity assay and indicated improved overall survival and significantly reduced rates of relapse in lestaurtinib-treated patients who achieved sustained greater than 85% FLT3 inhibition. In conclusion, combining lestaurtinib with intensive chemotherapy proved feasible in younger patients with newly diagnosed FLT3-mutated AML, but yielded no overall clinical benefit. The improved clinical outcomes seen in patients achieving sustained FLT3 inhibition encourage continued evaluation of FLT3-directed therapy alongside front-line AML treatment. The UK AML15 and AML17 trials are registered at www.isrctn.com/ISRCTN17161961 and www.isrctn.com/ISRCTN55675535 respectively.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carbazoles/administration & dosage , Leukemia, Myeloid, Acute/drug therapy , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Adolescent , Adult , Aged , Child , Child, Preschool , Consolidation Chemotherapy , Disease-Free Survival , Female , Furans , Hematopoietic Stem Cell Transplantation/methods , Humans , Induction Chemotherapy , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Mutation , Proportional Hazards Models , Protein Kinase Inhibitors/administration & dosage , Young Adult , fms-Like Tyrosine Kinase 3/geneticsSubject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Mutation , Neoplasm, Residual/diagnosis , Neoplasm, Residual/genetics , Polymerase Chain Reaction , PrognosisABSTRACT
The gene CXXC5 on 5q31 is frequently deleted in acute myeloid leukemia (AML) with del(5q), suggesting that inactivation of CXXC5 might play a role in leukemogenesis. Here, we investigated the functional and prognostic implications of CXXC5 expression in AML. CXXC5 mRNA was downregulated in AML with MLL rearrangements, t(8;21) and GATA2 mutations. As a mechanism of CXXC5 inactivation, we found evidence for epigenetic silencing by promoter methylation. Patients with CXXC5 expression below the median level had a lower relapse rate (45% vs 59%; P = .007) and a better overall survival (OS, 46% vs 28%; P < .001) and event-free survival (EFS, 36% vs 21%; P < .001) at 5 years, independent of cytogenetic risk groups and known molecular risk factors. In gene-expression profiling, lower CXXC5 expression was associated with upregulation of cell-cycling genes and co-downregulation of genes implicated in leukemogenesis (WT1, GATA2, MLL, DNMT3B, RUNX1). Functional analyses demonstrated CXXC5 to inhibit leukemic cell proliferation and Wnt signaling and to affect the p53-dependent DNA damage response. In conclusion, our data suggest a tumor suppressor function of CXXC5 in AML. Inactivation of CXXC5 is associated with different leukemic pathways and defines an AML subgroup with better outcome.
Subject(s)
Carrier Proteins/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Wnt Proteins/antagonists & inhibitors , Adolescent , Adult , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Cycle , Cohort Studies , DNA Methylation , DNA-Binding Proteins , Down-Regulation , Female , Follow-Up Studies , Gene Expression Profiling , Humans , Immunoenzyme Techniques , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Prognosis , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Survival Rate , Transcription Factors , Tumor Cells, Cultured , Young AdultABSTRACT
PURPOSE: To determine the optimal induction chemotherapy regimen for younger adults with newly diagnosed AML without known adverse risk cytogenetics. PATIENTS AND METHODS: One thousand thirty-three patients were randomly assigned to intensified (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin [FLAG-Ida]) or standard (daunorubicin and Ara-C [DA]) induction chemotherapy, with one or two doses of gemtuzumab ozogamicin (GO). The primary end point was overall survival (OS). RESULTS: There was no difference in remission rate after two courses between FLAG-Ida + GO and DA + GO (complete remission [CR] + CR with incomplete hematologic recovery 93% v 91%) or in day 60 mortality (4.3% v 4.6%). There was no difference in OS (66% v 63%; P = .41); however, the risk of relapse was lower with FLAG-Ida + GO (24% v 41%; P < .001) and 3-year event-free survival was higher (57% v 45%; P < .001). In patients with an NPM1 mutation (30%), 3-year OS was significantly higher with FLAG-Ida + GO (82% v 64%; P = .005). NPM1 measurable residual disease (MRD) clearance was also greater, with 88% versus 77% becoming MRD-negative in peripheral blood after cycle 2 (P = .02). Three-year OS was also higher in patients with a FLT3 mutation (64% v 54%; P = .047). Fewer transplants were performed in patients receiving FLAG-Ida + GO (238 v 278; P = .02). There was no difference in outcome according to the number of GO doses, although NPM1 MRD clearance was higher with two doses in the DA arm. Patients with core binding factor AML treated with DA and one dose of GO had a 3-year OS of 96% with no survival benefit from FLAG-Ida + GO. CONCLUSION: Overall, FLAG-Ida + GO significantly reduced relapse without improving OS. However, exploratory analyses show that patients with NPM1 and FLT3 mutations had substantial improvements in OS. By contrast, in patients with core binding factor AML, outcomes were excellent with DA + GO with no FLAG-Ida benefit.
Subject(s)
Idarubicin , Leukemia, Myeloid, Acute , Vidarabine/analogs & derivatives , fms-Like Tyrosine Kinase 3 , Adult , Humans , Gemtuzumab/therapeutic use , Granulocyte Colony-Stimulating Factor/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/diagnosis , Progression-Free Survival , Cytarabine/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Vidarabine/therapeutic use , Nuclear Proteins/genetics , Mutation , Core Binding Factors , Recurrence , Antineoplastic Combined Chemotherapy Protocols/adverse effectsABSTRACT
PURPOSE: AML is a genetically heterogeneous disease, particularly in older patients. In patients older than 60 years, survival rates are variable after the most important curative approach, intensive chemotherapy followed by allogeneic hematopoietic cell transplantation (allo-HCT). Thus, there is an urgent need in clinical practice for a prognostic model to identify older patients with AML who benefit from curative treatment. METHODS: We studied 1,910 intensively treated patients older than 60 years with AML and high-risk myelodysplastic syndrome (HR-MDS) from two cohorts (NCRI-AML18 and HOVON-SAKK). The median patient age was 67 years. Using a random survival forest, clinical, molecular, and cytogenetic variables were evaluated in an AML development cohort (n = 1,204) for association with overall survival (OS). Relative weights of selected variables determined the prognostic model, which was validated in AML (n = 491) and HR-MDS cohorts (n = 215). RESULTS: The complete cohort had a high frequency of poor-risk features, including 2022 European LeukemiaNet adverse-risk (57.3%), mutated TP53 (14.4%), and myelodysplasia-related genetic features (65.1%). Nine variables were used to construct four groups with highly distinct 4-year OS in the (1) AML development, (2) AML validation, and (3) HR-MDS test cohorts ([1] favorable: 54% ± 4%, intermediate: 38% ± 2%, poor: 21% ± 2%, very poor: 4% ± 1%; [2] 54% ± 9%, 43% ± 4%, 27% ± 4%, 4% ± 3%; and [3] 54% ± 10%, 33% ± 6%, 14% ± 5%, 0% ± 3%, respectively). This new AML60+ classification improves current prognostic classifications. Importantly, patients within the AML60+ intermediate- and very poor-risk group significantly benefited from allo-HCT, whereas the poor-risk patients showed an indication, albeit nonsignificant, for improved outcome after allo-HCT. CONCLUSION: The new AML60+ classification provides prognostic information for intensively treated patients 60 years and older with AML and HR-MDS and identifies patients who benefit from intensive chemotherapy and allo-HCT.
ABSTRACT
Chemoresistance is a major contributor to the aggressiveness of AML and is often due to insufficient apoptosis. The CFLAR gene is expressed as long and short splice forms encoding the anti-apoptotic proteins c-FLIP(L) and c-FLIP(S) (CFLAR(L) and CFLAR(S) , respectively) that play important roles in drug resistance. In univariate analyses of CFLAR mRNA expression in adult AML patients, those individuals with higher than median mRNA expression of the long splice form CFLAR(L) (but not the short splice form) had significantly lower 3 year overall survival (P = 0·04) compared to those with low expression. In cell line studies, simultaneous down-regulation of c-FLIP(L) and c-FLIP(S) proteins using siRNA induced apoptosis in U937 and NB-4 AML cells, but not K562 or OCI-AML3 cells. However, dual c-FLIP(L/S) downregulation sensitized all four cell lines to apoptosis induced by recombinant tumour necrosis factor-related apoptosis-inducing ligand (rTRAIL). Moreover, specific downregulation of c-FLIP(L) was found to recapitulate the phenotypic effects of dual c-FLIP(L/S) downregulation. The histone deacetylase (HDAC)1/2/3/6 inhibitor Vorinostat was found to potently down-regulate c-FLIP(L) expression by transcriptional and post-transcriptional mechanisms and to sensitize AML cells to rTRAIL. Further analyses using more selective HDAC inhibitors revealed that HDAC6 inhibition was not required for c-FLIP(L) down-regulation. These results suggest that c-FLIP(L) may have clinical relevance both as a prognostic biomarker and potential therapeutic target for HDAC inhibitors in AML although this requires further study.
Subject(s)
Alternative Splicing , CASP8 and FADD-Like Apoptosis Regulating Protein/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Neoplasm Proteins/biosynthesis , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , Adolescent , Adult , Aged , Apoptosis/drug effects , CASP8 and FADD-Like Apoptosis Regulating Protein/biosynthesis , Cell Line, Tumor/cytology , Cell Line, Tumor/drug effects , Down-Regulation/drug effects , Drug Resistance, Neoplasm/genetics , Female , Gene Expression Regulation, Leukemic/drug effects , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/physiology , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Acute/genetics , Leukemia, Myelomonocytic, Acute/pathology , Male , Middle Aged , Neoplasm Proteins/genetics , Prognosis , RNA Interference , RNA, Messenger/genetics , RNA, Neoplasm/genetics , RNA, Small Interfering/pharmacology , Recombinant Proteins/pharmacology , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Young AdultABSTRACT
Nuclear factor I-C (NFIC) belongs to a family of NFI transcription factors that binds to DNA through CAATT-boxes and are involved in cellular differentiation and stem cell maintenance. Here we show NFIC protein is significantly overexpressed in 69% of acute myeloid leukemia patients. Examination of the functional consequences of NFIC overexpression in HSPCs showed that this protein promoted monocytic differentiation. Single-cell RNA sequencing analysis further demonstrated that NFIC overexpressing monocytes had increased expression of growth and survival genes. In contrast, depletion of NFIC through shRNA decreased cell growth, increased cell cycle arrest and apoptosis in AML cell lines and AML patient blasts. Further, in AML cell lines (THP-1), bulk RNA sequencing of NFIC knockdown led to downregulation of genes involved in cell survival and oncogenic signaling pathways including mixed lineage leukemia-1 (MLL-1). Lastly, we show that NFIC knockdown in an ex vivo mouse MLL::AF9 pre-leukemic stem cell model, decreased their growth and colony formation and increased expression of myeloid differentiation markers Gr1 and Mac1. Collectively, our results suggest that NFIC is an important transcription factor in myeloid differentiation as well as AML cell survival and is a potential therapeutic target in AML.
Subject(s)
Leukemia, Myeloid, Acute , NFI Transcription Factors , Animals , Mice , Cell Differentiation/physiology , Cell Survival/genetics , Hematopoiesis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Myeloid-Lymphoid Leukemia Protein/genetics , NFI Transcription Factors/metabolismABSTRACT
Liposomal daunorubicin and cytarabine (CPX-351) improved overall survival (OS) compared with 7+3 chemotherapy in older patients with secondary acute myeloid leukemia (AML); to date, there have been no randomized studies in younger patients. The high-risk cohort of the UK NCRI AML19 trial (ISRCTN78449203) compared CPX-351 with FLAG-Ida in younger adults with newly diagnosed adverse cytogenetic AML or high-risk myelodysplastic syndromes (MDS). A total of 189 patients were randomized (median age, 56 years). Per clinical criteria, 49% of patients had de novo AML, 20% had secondary AML, and 30% had high-risk MDS. MDS-related cytogenetics were present in 73% of the patients, with a complex karyotype in 49%. TP53 was the most common mutated gene, in 43%. Myelodysplasia-related gene mutations were present in 75 (44%) patients. The overall response rate (CR + CRi) after course 2 was 64% and 76% for CPX-351 and FLAG-Ida, respectively. There was no difference in OS (13.3 months vs 11.4 months) or event-free survival in multivariable analysis. However, relapse-free survival was significantly longer with CPX-351 (median 22.1 vs 8.35 months). There was no difference between the treatment arms in patients with clinically defined secondary AML or those with MDS-related cytogenetic abnormalities; however, an exploratory subgroup of patients with MDS-related gene mutations had significantly longer OS with CPX-351 (median 38.4 vs 16.3 months). In conclusion, the OS of younger patients with adverse risk AML/MDS was not significantly different between CPX-351 and FLAG-Ida.
Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Adult , Humans , Aged , Middle Aged , Daunorubicin/therapeutic use , Cytarabine/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/complications , Karyotype , United KingdomABSTRACT
Patients with FLT3-mutated AML have a high relapse rate and suboptimal outcomes. Many have co-mutations suitable for measurable residual disease (MRD) monitoring by RT-qPCR and those destined to relapse can be identified by high or rising levels of MRD, called molecular failure. This provides a window for pre-emptive intervention, but there is little evidence to guide treatment. The use of FLT3 inhibitors (FLT3i) appears attractive but their use has not yet been evaluated. We identified 56 patients treated with FLT3i at molecular failure. The FLT3 mutation was an ITD in 52, TKD in 7 and both in 3. Over half of patients had previously received midostaurin. Molecular failure occurred at a median 9.2 months from diagnosis and was treated with gilteritinib (n = 38), quizartinib (n = 7) or sorafenib (n = 11). 60% achieved a molecular response, with 45% reaching MRD negativity. Haematological toxicity was low, and 22 patients were bridged directly to allogeneic transplant with another 6 to donor lymphocyte infusion. 2-year overall survival was 80% (95%CI 69-93) and molecular event-free survival 56% (95%CI 44-72). High-sensitivity next-generation sequencing for FLT3-ITD at molecular failure identified patients more likely to benefit. FLT3i monotherapy for molecular failure is a promising strategy which merits evaluation in prospective studies.
Subject(s)
Leukemia, Myeloid, Acute , Salvage Therapy , Humans , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Mutation , Neoplasm Recurrence, Local , Prospective Studies , Protein Kinase Inhibitors/therapeutic useABSTRACT
We investigated the benefit of adding all-trans retinoic acid (ATRA) to chemotherapy for younger patients with nonacute promyelocytic acute myeloid leukemia and high-risk myelodysplastic syndrome, and considered interactions between treatment and molecular markers. Overall, 1075 patients less than 60 years of age were randomized to receive or not receive ATRA in addition to daunorubicin/Ara-C/thioguanine chemotherapy with Ara-C at standard or double standard dose. There were data on FLT3 internal tandem duplications and NPM1 mutations (n = 592), CEBPA mutations (n = 423), and MN1 expression (n = 195). The complete remission rate was 68% with complete remission with incomplete count recovery in an additional 16%; 8-year overall survival was 32%. There was no significant treatment effect for any outcome, with no significant interactions between treatment and demographics, or cytarabine randomization. Importantly, there were no interactions by FLT3/internal tandem duplications, NPM1, or CEBPA mutation. There was a suggestion that ATRA reduced relapse in patients with lower MN1 levels, but no significant effect on overall survival. Results were consistent when restricted to patients with normal karyotype. ATRA has no overall effect on treatment outcomes in this group of patients. The study did not identify any subgroup of patients likely to derive a significant survival benefit from the addition of ATRA to chemotherapy.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , CCAAT-Enhancer-Binding Proteins/genetics , Leukemia, Promyelocytic, Acute/drug therapy , Mutation , Nuclear Proteins/genetics , fms-Like Tyrosine Kinase 3/genetics , Adolescent , Adult , Child , Child, Preschool , Cytarabine/administration & dosage , Daunorubicin/administration & dosage , Female , Gene Expression Regulation, Leukemic , Genotype , Humans , Infant , Infant, Newborn , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Male , Middle Aged , Nucleophosmin , Reverse Transcriptase Polymerase Chain Reaction , Thioguanine/administration & dosage , Treatment Outcome , Tretinoin/administration & dosage , Young AdultABSTRACT
The protein kinase C (PKC) family of serine/threonine kinases are pleiotropic signaling regulators and are implicated in hematopoietic signaling and development. Only one isoform however, PKCϵ, has oncogenic properties in solid cancers where it is associated with poor outcomes. Here we show that PKCϵ protein is significantly overexpressed in acute myeloid leukemia (AML; 37% of patients). In addition, PKCϵ expression in AML was associated with a significant reduction in complete remission induction and disease-free survival. Examination of the functional consequences of PKCϵ overexpression in normal human hematopoiesis, showed that PKCϵ promotes myeloid differentiation, particularly of the monocytic lineage, and decreased colony formation, suggesting that PKCϵ does not act as an oncogene in hematopoietic cells. Rather, in AML cell lines, PKCϵ overexpression selectively conferred resistance to the chemotherapeutic agent, daunorubicin, by reducing intracellular concentrations of this agent. Mechanistic analysis showed that PKCϵ promoted the expression of the efflux pump, P-GP (ABCB1), and that drug efflux mediated by this transporter fully accounted for the daunorubicin resistance associated with PKCϵ overexpression. Analysis of AML patient samples also showed a link between PKCϵ and P-GP protein expression suggesting that PKCϵ expression drives treatment resistance in AML by upregulating P-GP expression.
ABSTRACT
RUNX proteins belong to a family of transcription factors essential for cellular proliferation, differentiation, and apoptosis with emerging data implicating RUNX3 in haematopoiesis and haematological malignancies. Here we show that RUNX3 plays an important regulatory role in normal human erythropoiesis. The impact of altering RUNX3 expression on erythropoiesis was determined by transducing human CD34+ cells with RUNX3 overexpression or shRNA knockdown vectors. Analysis of RUNX3 mRNA expression showed that RUNX3 levels decreased during erythropoiesis. Functionally, RUNX3 overexpression had a modest impact on early erythroid growth and development. However, in late-stage erythroid development, RUNX3 promoted growth and inhibited terminal differentiation with RUNX3 overexpressing cells exhibiting lower expression of glycophorin A, greater cell size and less differentiated morphology. These results suggest that suppression of RUNX3 is required for normal erythropoiesis. Overexpression of RUNX3 increased colony formation in liquid culture whilst, corresponding RUNX3 knockdown suppressed colony formation but otherwise had little impact. This study demonstrates that the downregulation of RUNX3 observed in normal human erythropoiesis is important in promoting the terminal stages of erythroid development and may further our understanding of the role of this transcription factor in haematological malignancies.