Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
J Virol ; 97(11): e0085023, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37943040

ABSTRACT

IMPORTANCE: Burkholderia infections are a significant concern in people with CF and other immunocompromising disorders, and are difficult to treat with conventional antibiotics due to their inherent drug resistance. Bacteriophages, or bacterial viruses, are now seen as a potential alternative therapy for these infections, but most of the naturally occurring phages are temperate and have narrow host ranges, which limit their utility as therapeutics. Here we describe the temperate Burkholderia phage Milagro and our efforts to engineer this phage into a potential therapeutic by expanding the phage host range and selecting for phage mutants that are strictly virulent. This approach may be used to generate new therapeutic agents for treating intractable infections in CF patients.


Subject(s)
Bacteriophages , Burkholderia , Phage Therapy , Humans , Anti-Bacterial Agents , Bacteriophages/genetics , Burkholderia/virology , Host Specificity , Cystic Fibrosis/microbiology , Burkholderia Infections/therapy
2.
Antimicrob Agents Chemother ; 67(4): e0003723, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36975787

ABSTRACT

Recurrent urinary tract infections (rUTI) are common in kidney transplant recipients (KTR) and are associated with multidrug resistance and increased morbidity/mortality. Novel antibiotic alternatives to reduce UTI recurrence are critically needed. We describe a case of rUTI due to extended spectrum beta lactamase (ESBL) Klebsiella pneumoniae in a KTR that was treated successfully with 4 weeks of adjunctive intravenous bacteriophage therapy alone, without concomitant antibiotics, and with no recurrence in a year of follow-up.


Subject(s)
Urinary Tract Infections , beta-Lactamases , Humans , beta-Lactamases/therapeutic use , Anti-Bacterial Agents/therapeutic use , Urinary Tract Infections/drug therapy , Klebsiella pneumoniae , Retrospective Studies
3.
Appl Environ Microbiol ; 89(4): e0003323, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37022263

ABSTRACT

Salmonella can persist in the feedlot pen environment, acting as a source of transmission among beef cattle. Concurrently, cattle that are colonized with Salmonella can perpetuate contamination of the pen environment through fecal shedding. To study these cyclical dynamics, pen environment and bovine samples were collected for a 7-month longitudinal comparison of Salmonella prevalence, serovar, and antimicrobial resistance profiles. These samples included composite environment, water, and feed from the feedlot pens (n = 30) and cattle (n = 282) feces and subiliac lymph nodes. Salmonella prevalence across all sample types was 57.7%, with the highest prevalence in the pen environment (76.0%) and feces (70.9%). Salmonella was identified in 42.3% of the subiliac lymph nodes. Based on a multilevel mixed-effects logistic regression model, Salmonella prevalence varied significantly (P < 0.05) by collection month for most sample types. Eight Salmonella serovars were identified, and most isolates were pansusceptible, except for a point mutation in the parC gene, associated with fluoroquinolone resistance. There was a proportional difference in serovars Montevideo, Anatum, and Lubbock comparing the environment (37.2, 15.9, and 11.0%, respectively), fecal (27.5, 22.2, and 14.6%, respectively), and lymph node (15.6, 30.2, and 17.7%, respectively) samples. This suggests that the ability of Salmonella to migrate from the pen environment to the cattle host-or vice versa-is serovar specific. The presence of certain serovars also varied by season. Our results provide evidence that Salmonella serovar dynamics differ when comparing environment and host; therefore, developing serovar-specific preharvest environmental Salmonella mitigation strategies should be considered. IMPORTANCE Salmonella contamination of beef products, specifically from the incorporation of bovine lymph nodes into ground beef, remains a food safety concern. Current postharvest Salmonella mitigation techniques do not address Salmonella bacteria that are harbored in the lymph nodes, nor is it well understood how Salmonella invades the lymph nodes. Alternatively, preharvest mitigation techniques that can be applied to the feedlot environment, such as moisture applications, probiotics, or bacteriophage, may reduce Salmonella before dissemination into cattle lymph nodes. However, previous research conducted in cattle feedlots includes study designs that are cross-sectional, are limited to point-in-time sampling, or are limited to sampling of the cattle host, making it difficult to assess the Salmonella interactions between environment and hosts. This longitudinal analysis of the cattle feedlot explores the Salmonella dynamics between the feedlot environment and beef cattle over time to determine the applicability of preharvest environmental treatments.


Subject(s)
Cattle Diseases , Salmonella enterica , Animals , Cattle , Serogroup , Longitudinal Studies , Prevalence , Cross-Sectional Studies , Cattle Diseases/epidemiology , Cattle Diseases/microbiology , Salmonella , Feces/microbiology , Lymph Nodes/microbiology
4.
J Virol ; 95(19): e0239120, 2021 09 09.
Article in English | MEDLINE | ID: mdl-34287047

ABSTRACT

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups, namely, P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here, we present the following three novel S. aureus "jumbo" phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content are similar to those of known jumbo phages of Bacillus sp., including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and nonvirion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. IMPORTANCE This study describes the comparative genomics of the following three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss are active processes in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making it a potential vector for horizontal gene transfer in the environment.


Subject(s)
Genome, Viral , Myoviridae/genetics , Staphylococcus Phages/genetics , Staphylococcus aureus/virology , Animals , DNA, Viral/genetics , DNA-Directed RNA Polymerases/genetics , Genomics , Introns , Myoviridae/isolation & purification , Myoviridae/physiology , Myoviridae/ultrastructure , Sequence Analysis, DNA , Staphylococcus Phages/isolation & purification , Staphylococcus Phages/physiology , Staphylococcus Phages/ultrastructure , Swine , Transduction, Genetic , Viral Proteins/genetics
5.
PLoS Comput Biol ; 17(10): e1009463, 2021 10.
Article in English | MEDLINE | ID: mdl-34710081

ABSTRACT

Experimental data about gene functions curated from the primary literature have enormous value for research scientists in understanding biology. Using the Gene Ontology (GO), manual curation by experts has provided an important resource for studying gene function, especially within model organisms. Unprecedented expansion of the scientific literature and validation of the predicted proteins have increased both data value and the challenges of keeping pace. Capturing literature-based functional annotations is limited by the ability of biocurators to handle the massive and rapidly growing scientific literature. Within the community-oriented wiki framework for GO annotation called the Gene Ontology Normal Usage Tracking System (GONUTS), we describe an approach to expand biocuration through crowdsourcing with undergraduates. This multiplies the number of high-quality annotations in international databases, enriches our coverage of the literature on normal gene function, and pushes the field in new directions. From an intercollegiate competition judged by experienced biocurators, Community Assessment of Community Annotation with Ontologies (CACAO), we have contributed nearly 5,000 literature-based annotations. Many of those annotations are to organisms not currently well-represented within GO. Over a 10-year history, our community contributors have spurred changes to the ontology not traditionally covered by professional biocurators. The CACAO principle of relying on community members to participate in and shape the future of biocuration in GO is a powerful and scalable model used to promote the scientific enterprise. It also provides undergraduate students with a unique and enriching introduction to critical reading of primary literature and acquisition of marketable skills.


Subject(s)
Crowdsourcing/methods , Gene Ontology , Molecular Sequence Annotation/methods , Computational Biology , Databases, Genetic , Humans , Proteins/genetics , Proteins/physiology
6.
Curr Microbiol ; 80(1): 6, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36445499

ABSTRACT

Bacteriophages are vastly abundant, diverse, and influential, but with few exceptions (e.g. the Proteobacteria genera Wolbachia and Hamiltonella), the role of phages in heritable bacteria-arthropod interactions, which are ubiquitous and diverse, remains largely unexplored. Despite prior studies documenting phage-like particles in the mollicute Spiroplasma associated with Drosophila flies, genomic sequences of such phage are lacking, and their effects on the Spiroplasma-Drosophila interaction have not been comprehensively characterized. We used a density step gradient to isolate phage-like particles from the male-killing bacterium Spiroplasma poulsonii (strains NSRO and MSRO-Br) harbored by Drosophila melanogaster. Isolated particles were subjected to DNA sequencing, assembly, and annotation. Several lines of evidence suggest that we recovered phage-like particles of similar features (shape, size, DNA content) to those previously reported in Drosophila-associated Spiroplasma strains. We recovered three ~ 19 kb phage-like contigs (two in NSRO and one in MSRO-Br) containing 21-24 open reading frames, a read-alignment pattern consistent with circular permutation, and terminal redundancy (at least in NSRO). Although our results do not allow us to distinguish whether these phage-like contigs represent infective phage-like particles capable of transmitting their DNA to new hosts, their encoding of several typical phage genes suggests that they are at least remnants of functional phage. We also recovered two smaller non-phage-like contigs encoding a known Spiroplasma toxin (Ribosome Inactivating Protein; RIP), and an insertion element, suggesting that they are packaged into particles. Substantial homology of our particle-derived contigs was found in the genome assemblies of members of the Spiroplasma poulsonii clade.


Subject(s)
Bacteriophages , Spiroplasma , Male , Animals , Drosophila , Bacteriophages/genetics , Drosophila melanogaster , Spiroplasma/genetics
7.
PLoS Comput Biol ; 16(11): e1008214, 2020 11.
Article in English | MEDLINE | ID: mdl-33137082

ABSTRACT

In the modern genomic era, scientists without extensive bioinformatic training need to apply high-power computational analyses to critical tasks like phage genome annotation. At the Center for Phage Technology (CPT), we developed a suite of phage-oriented tools housed in open, user-friendly web-based interfaces. A Galaxy platform conducts computationally intensive analyses and Apollo, a collaborative genome annotation editor, visualizes the results of these analyses. The collection includes open source applications such as the BLAST+ suite, InterProScan, and several gene callers, as well as unique tools developed at the CPT that allow maximum user flexibility. We describe in detail programs for finding Shine-Dalgarno sequences, resources used for confident identification of lysis genes such as spanins, and methods used for identifying interrupted genes that contain frameshifts or introns. At the CPT, genome annotation is separated into two robust segments that are facilitated through the automated execution of many tools chained together in an operation called a workflow. First, the structural annotation workflow results in gene and other feature calls. This is followed by a functional annotation workflow that combines sequence comparisons and conserved domain searching, which is contextualized to allow integrated evidence assessment in functional prediction. Finally, we describe a workflow used for comparative genomics. Using this multi-purpose platform enables researchers to easily and accurately annotate an entire phage genome. The portal can be accessed at https://cpt.tamu.edu/galaxy-pub with accompanying user training material.


Subject(s)
Bacteriophages/genetics , Genome, Viral , Molecular Sequence Annotation , User-Computer Interface , Databases, Genetic , Internet , Quality Control
8.
J Virol ; 93(22)2019 11 15.
Article in English | MEDLINE | ID: mdl-31462565

ABSTRACT

We present the genome sequences of Salmonella enterica tailed phages Sasha, Sergei, and Solent. These phages, along with Salmonella phages 9NA, FSL_SP-062, and FSL_SP-069 and the more distantly related Proteus phage PmiS-Isfahan, have similarly sized genomes of between 52 and 57 kbp in length that are largely syntenic. Their genomes also show substantial genome mosaicism relative to one another, which is common within tailed phage clusters. Their gene content ranges from 80 to 99 predicted genes, of which 40 are common to all seven and form the core genome, which includes all identifiable virion assembly and DNA replication genes. The total number of gene types (pangenome) in the seven phages is 176, and 59 of these are unique to individual phages. Their core genomes are much more closely related to one another than to the genome of any other known phage, and they comprise a well-defined cluster within the family Siphoviridae To begin to characterize this group of phages in more experimental detail, we identified the genes that encode the major virion proteins and examined the DNA packaging of the prototypic member, phage 9NA. We show that it uses a pac site-directed headful packaging mechanism that results in virion chromosomes that are circularly permuted and about 13% terminally redundant. We also show that its packaging series initiates with double-stranded DNA cleavages that are scattered across a 170-bp region and that its headful measuring device has a precision of ±1.8%.IMPORTANCE The 9NA-like phages are clearly highly related to each other but are not closely related to any other known phage type. This work describes the genomes of three new 9NA-like phages and the results of experimental analysis of the proteome of the 9NA virion and DNA packaging into the 9NA phage head. There is increasing interest in the biology of phages because of their potential for use as antibacterial agents and for their ecological roles in bacterial communities. 9NA-like phages that infect two bacterial genera have been identified to date, and related phages infecting additional Gram-negative bacterial hosts are likely to be found in the future. This work provides a foundation for the study of these phages, which will facilitate their study and potential use.


Subject(s)
DNA Packaging/genetics , Salmonella Phages/genetics , Salmonella/virology , DNA Packaging/physiology , DNA Replication , DNA, Viral/genetics , Genome/genetics , Genome, Viral/genetics , Genomics/methods , Phylogeny , Salmonella/genetics , Salmonella/metabolism , Siphoviridae/genetics , Siphoviridae/metabolism , Viral Proteins/genetics , Virion/genetics
9.
Mol Microbiol ; 105(3): 399-412, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28509398

ABSTRACT

Bacterial Type I restriction-modification (R-M) systems present a major barrier to foreign DNA entering the bacterial cell. The temperate phage P1 packages several proteins into the virion that protect the phage DNA from host restriction. Isogenic P1 deletion mutants were used to reconstitute the previously described restriction phenotypes associated with darA and darB. While P1ΔdarA and P1ΔdarB produced the expected phenotypes, deletions of adjacent genes hdf and ddrA also produced darA-like phenotypes and deletion of ulx produced a darB-like phenotype, implicating several new proteins of previously unknown function in the P1 dar antirestriction system. Interestingly, disruption of ddrB decreased P1's sensitivity to EcoB and EcoK restriction. Proteomic analysis of purified virions suggests that packaging of antirestriction components into P1 virions follows a distinct pathway that begins with the incorporation of DarA and Hdf and concludes with DarB and Ulx. Electron microscopy analysis showed that hdf and darA mutants also produce abnormally high proportions of virions with aberrant small heads, which suggests Hdf and DarA play a role in capsid morphogenesis. The P1 antirestriction system is more complex than previously realized and is comprised of multiple proteins including DdrA, DdrB, Hdf, and Ulx in addition to DarA and DarB.


Subject(s)
Bacteriophage P1/metabolism , Capsid/physiology , Bacterial Proteins/metabolism , Bacteriophage P1/genetics , Bacteriophages/genetics , DNA Restriction-Modification Enzymes/genetics , DNA, Viral/metabolism , Escherichia coli/genetics , Morphogenesis , Proteomics , Viral Proteins/metabolism , Virion/genetics
10.
Article in English | MEDLINE | ID: mdl-28807909

ABSTRACT

Widespread antibiotic use in clinical medicine and the livestock industry has contributed to the global spread of multidrug-resistant (MDR) bacterial pathogens, including Acinetobacter baumannii We report on a method used to produce a personalized bacteriophage-based therapeutic treatment for a 68-year-old diabetic patient with necrotizing pancreatitis complicated by an MDR A. baumannii infection. Despite multiple antibiotic courses and efforts at percutaneous drainage of a pancreatic pseudocyst, the patient deteriorated over a 4-month period. In the absence of effective antibiotics, two laboratories identified nine different bacteriophages with lytic activity for an A. baumannii isolate from the patient. Administration of these bacteriophages intravenously and percutaneously into the abscess cavities was associated with reversal of the patient's downward clinical trajectory, clearance of the A. baumannii infection, and a return to health. The outcome of this case suggests that the methods described here for the production of bacteriophage therapeutics could be applied to similar cases and that more concerted efforts to investigate the use of therapeutic bacteriophages for MDR bacterial infections are warranted.


Subject(s)
Acinetobacter Infections/therapy , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/therapeutic use , Bacteriophages/classification , Pancreatic Pseudocyst/therapy , Pancreatitis, Acute Necrotizing/therapy , Phage Therapy/methods , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Acinetobacter baumannii/virology , Aged , Drug Resistance, Multiple, Bacterial , Gallstones/pathology , Humans , Male , Minocycline/therapeutic use , Pancreatic Pseudocyst/microbiology , Pancreatitis, Acute Necrotizing/microbiology
12.
Animals (Basel) ; 13(20)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37893894

ABSTRACT

Post-harvest Salmonella mitigation techniques are insufficient at addressing Salmonella harbored in cattle lymph nodes, necessitating the exploration of pre-harvest alternatives that reduce Salmonella prior to dissemination to the lymph nodes. A 2 × 2, unbalanced experiment was conducted to determine the effectiveness of pre-harvest treatments applied to the pen surface for Salmonella mitigation in cattle. Treatments included manure slurry intended to mimic pen run-off water (n = 4 pens), a bacteriophage cocktail (n = 4), a combination of both treatments (n = 5), and a control group (n = 5) that received no treatment. Environment samples from 18 feedlot pens and fecal grabs, hide swabs, and subiliac lymph nodes from 178 cattle were collected and selectively enriched for Salmonella, and Salmonella isolates were sequenced. The combination treatment was most effective at reducing Salmonella, and the prevalence was significantly lower compared with the control group for rump swabs on Days 14 and 21. The treatment impact on Salmonella in the lymph nodes could not be determined due to low prevalence. The reduction on cattle hides suggests that bacteriophage or water treatments applied to the feedlot pen surface may reduce Salmonella populations in cattle during the pre-harvest period, resulting in reduced contamination during slaughter and processing.

13.
BMC Genomics ; 13: 542, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-23050599

ABSTRACT

BACKGROUND: The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. RESULTS: Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell's replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. CONCLUSIONS: Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus.


Subject(s)
Caulobacter crescentus/virology , Genomics , Siphoviridae/genetics , Amino Acid Sequence , Base Sequence , Caulobacter crescentus/cytology , DNA Packaging , DNA Replication , DNA, Viral/biosynthesis , DNA, Viral/genetics , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Genome, Viral/genetics , Molecular Sequence Data , Phylogeny , Protein Biosynthesis , Siphoviridae/physiology , Viral Structural Proteins/chemistry , Viral Structural Proteins/genetics , Viral Structural Proteins/metabolism
14.
Pathog Immun ; 7(2): 1-45, 2022.
Article in English | MEDLINE | ID: mdl-36320594

ABSTRACT

Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.

15.
Viruses ; 14(4)2022 03 25.
Article in English | MEDLINE | ID: mdl-35458408

ABSTRACT

Bacteriophage P1 is the premier transducing phage of E. coli. Despite its prominence in advancing E. coli genetics, modern molecular techniques have not been applied to thoroughly understand P1 structure. Here, we report the proteome of the P1 virion as determined by liquid chromatography tandem mass-spectrometry. Additionally, a library of single-gene knockouts identified the following five previously unknown essential genes: pmgA, pmgB, pmgC, pmgG, and pmgR. In addition, proteolytic processing of the major capsid protein is a known feature of P1 morphogenesis, and we identified the processing site by N-terminal sequencing to be between E120 and S121, producing a 448-residue, 49.3 kDa mature peptide. Furthermore, the P1 defense against restriction (Dar) system consists of six known proteins that are incorporated into the virion during morphogenesis. The largest of these, DarB, is a 250 kDa protein that is believed to translocate into the cell during infection. DarB deletions indicated the presence of an N-terminal packaging signal, and the N-terminal 30 residues of DarB are shown to be sufficient for directing a heterologous reporter protein to the capsid. Taken together, the data expand on essential structural P1 proteins as well as introduces P1 as a nanomachine for cellular delivery.


Subject(s)
Bacteriophage P1 , Escherichia coli , Bacteriophage P1/genetics , Bacteriophage P1/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , DNA, Viral/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism
16.
Sci Rep ; 12(1): 5024, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35323827

ABSTRACT

Post-weaning enteropathies in swine caused by pathogenic E. coli, such as post-weaning diarrhea (PWD) or edema disease (ED), remain a significant problem for the swine industry. Reduction in the use of antibiotics over concerns of antibiotic resistance and public health concerns, necessitate the evaluation of effective antibiotic alternatives to prevent significant loss of livestock and/or reductions in swine growth performance. For this purpose, an appropriate piglet model of pathogenic E. coli enteropathy is required. In this study, we attempted to induce clinical signs of post-weaning disease in a piglet model using a one-time acute or lower daily chronic dose of a pathogenic E. coli strain containing genes for both heat stable and labile toxins, as well as Shiga toxin. The induced disease state was monitored by determining fecal shedding and colonization of the challenge strain, animal growth performance, cytokine levels, fecal calprotectin, histology, fecal metabolomics, and fecal microbiome shifts. The most informative analyses were colonization and shedding of the pathogen, serum cytokines, metabolomics, and targeted metagenomics to determine dysbiosis. Histopathological changes of the gastrointestinal (GI) tract and tight junction leakage as measured by fecal calprotectin concentrations were not observed. Chronic dosing was similar to the acute regimen suggesting that a high dose of pathogen, as used in many studies, may not be necessary. The piglet disease model presented here can be used to evaluate alternative PWD treatment options.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Microbiota , Swine Diseases , Animals , Anti-Bacterial Agents/pharmacology , Diarrhea/prevention & control , Diarrhea/veterinary , Escherichia coli Infections/prevention & control , Inflammation , Leukocyte L1 Antigen Complex , Metabolome , Swine , Swine Diseases/prevention & control , Weaning
17.
Nat Commun ; 13(1): 3776, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773283

ABSTRACT

In 2016, a 68-year-old patient with a disseminated multidrug-resistant Acinetobacter baumannii infection was successfully treated using lytic bacteriophages. Here we report the genomes of the nine phages used for treatment and three strains of A. baumannii isolated prior to and during treatment. The phages used in the initial treatment are related, T4-like myophages. Analysis of 19 A. baumannii isolates collected before and during phage treatment shows that resistance to the T4-like phages appeared two days following the start of treatment. We generate complete genomic sequences for three A. baumannii strains (TP1, TP2 and TP3) collected before and during treatment, supporting a clonal relationship. Furthermore, we use strain TP1 to select for increased resistance to five of the phages in vitro, and identify mutations that are also found in phage-insensitive isolates TP2 and TP3 (which evolved in vivo during phage treatment). These results support that in vitro investigations can produce results that are relevant to the in vivo environment.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Bacteriophages , Phage Therapy , Acinetobacter Infections/therapy , Acinetobacter baumannii/genetics , Aged , Bacteriophages/genetics , Genomics , Humans
18.
J Bacteriol ; 193(19): 5300-13, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21804006

ABSTRACT

Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages.


Subject(s)
Bacteriophages/genetics , Bacteriophages/metabolism , Burkholderia cenocepacia/virology , Genome, Viral/genetics , Bacteriophages/ultrastructure , Microscopy, Electron, Transmission , Proteomics , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/metabolism
19.
J Infect Dis ; 201(2): 264-71, 2010 Jan 15.
Article in English | MEDLINE | ID: mdl-20001604

ABSTRACT

The therapeutic potential of bacteriophages (phages) in a mouse model of acute Burkholderia cenocepacia pulmonary infection was assessed. Phage treatment was administered by either intranasal inhalation or intraperitoneal injection. Bacterial density, macrophage inflammatory protein 2 (MIP-2), and tumor necrosis factor alpha (TNF-alpha) levels were significantly reduced in lungs of mice treated with intraperitoneal phages (P < .05). No significant differences in lung bacterial density or MIP-2 levels were found between untreated mice and mice treated with intranasal phages, intraperitoneal ultraviolet-inactivated phages, or intraperitoneal lambda phage control mice. Mock-infected mice treated with phage showed no significant increase in lung MIP-2 or TNF-alpha levels compared with mock-infected/mock-treated mice. We have demonstrated the efficacy of phage therapy in an acute B. cenocepacia lung infection model. Systemic phage administration was more effective than inhalational administration, suggesting that circulating phages have better access to bacteria in lungs than do topical phages.


Subject(s)
Bacteriophages , Biological Therapy , Burkholderia Infections/therapy , Burkholderia cepacia complex/virology , Respiratory Tract Infections/therapy , Administration, Intranasal , Animals , Disease Models, Animal , Injections, Intraperitoneal , Mice , Respiratory Tract Infections/microbiology
20.
Sci Total Environ ; 758: 143969, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33333303

ABSTRACT

Triacylglycerols (TAGs) are starting materials for the production of biolipid-based fuels such as biodiesel and biojet fuel. While various microorganisms can produce TAGs from renewable resources, the cultivation of TAG-producing microorganisms under sterilization conditions to avoid microbial contamination and application of solvent to extract TAGs from the TAG-filled microorganisms are costly. To overcome these challenges, this study reports the feasibility of a non-sterile cultivation of an oleaginous bacterium Rhodococcus opacus PD631SpAHB under saline conditions, followed by the use of a solvent-free, phage-lysis-protein-based bioextraction approach for TAGs release. The engineered strain PD631SpAHB was developed by introducing a recombinant plasmid carrying a phage lytic gene cassette (pAHB) into Rhodococcus opacus PD631 via transformation, followed by adaptive evolution under saline conditions. This newly developed strain is a salt-tolerant strain with the inducible plasmid pAHB to enable TAGs release into the supernatant upon induction. Cell lysis of PD631SpAHB was confirmed by the decrease of the optical density of cell suspension, by the loss of cell membrane integrity, and by the detection of TAGs in the culture medium. Up to 38% of the total TAGs accumulated in PD631SpAHB was released into supernatant after the expression of the lytic genes. PD631SpAHB strain is a promising candidate to produce TAGs from non-sterile growth medium and release of its TAGs without solvent extraction - a new approach to reduce the overall cost of biolipid-based biofuel production.


Subject(s)
Biofuels , Rhodococcus , Rhodococcus/genetics , Solvents , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL