Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Adv Exp Med Biol ; 1185: 215-219, 2019.
Article in English | MEDLINE | ID: mdl-31884614

ABSTRACT

During the last 20 years, our group has focused on identifying the genes and mutations causative of inherited retinal dystrophies (IRDs). By applying massive sequencing approaches (NGS) in more than 500 familial and sporadic cases, we attained high diagnostic efficiency (85%) with a custom target gene panel and over 75% using whole exome sequencing (WES). Close to 40% of pathogenic alleles are novel mutations, which demand specific in silico tests and in vitro assays. Notably, missense variants are by far the most common type of mutation identified (around 40%), with small in-frame indels being less frequent (2%). To fill the gap of unsolved cases, when no candidate gene or only a single pathogenic allele has been identified, additional scientific and technical issues remain to be addressed. Reliable detection of genomic rearrangements and copy number variants (partial or complete), deep intronic mutations, variants that cause aberrant splicing events in retina-specific transcripts, functional assessment of hypomorphic missense alleles, mutations in regulatory sequences, the contribution of modifier genes to the IRD phenotype, and detection of low heteroplasmy mtDNA mutations are among the new challenges to be met.


Subject(s)
Retinal Dystrophies/diagnosis , Retinal Dystrophies/genetics , Alleles , DNA Copy Number Variations , DNA, Mitochondrial/genetics , Humans , Introns , Mutation, Missense , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL