Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 300(4): 107174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38499153

ABSTRACT

AL amyloidosis is a life-threatening disease caused by deposition of immunoglobulin light chains. While the mechanisms underlying light chains amyloidogenesis in vivo remain unclear, several studies have highlighted the role that tissue environment and structural amyloidogenicity of individual light chains have in the disease pathogenesis. AL natural deposits contain both full-length light chains and fragments encompassing the variable domain (VL) as well as different length segments of the constant region (CL), thus highlighting the relevance that proteolysis may have in the fibrillogenesis pathway. Here, we investigate the role of major truncated species of the disease-associated AL55 light chain that were previously identified in natural deposits. Specifically, we study structure, molecular dynamics, thermal stability, and capacity to form fibrils of a fragment containing both the VL and part of the CL (133-AL55), in comparison with the full-length protein and its variable domain alone, under shear stress and physiological conditions. Whereas the full-length light chain forms exclusively amorphous aggregates, both fragments generate fibrils, although, with different kinetics, aggregate structure, and interplay with the unfragmented protein. More specifically, the VL-CL 133-AL55 fragment entirely converts into amyloid fibrils microscopically and spectroscopically similar to their ex vivo counterpart and increases the amorphous aggregation of full-length AL55. Overall, our data support the idea that light chain structure and proteolysis are both relevant for amyloidogenesis in vivo and provide a novel biocompatible model of light chain fibrillogenesis suitable for future mechanistic studies.


Subject(s)
Amyloid , Immunoglobulin Light Chains , Amyloid/metabolism , Amyloid/chemistry , Humans , Immunoglobulin Light Chains/metabolism , Immunoglobulin Light Chains/chemistry , Immunoglobulin Light Chains/genetics , Molecular Dynamics Simulation , Immunoglobulin Constant Regions/metabolism , Immunoglobulin Constant Regions/genetics , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Light-chain Amyloidosis/metabolism , Immunoglobulin Light-chain Amyloidosis/pathology , Kinetics , Protein Domains
2.
J Pathol ; 255(3): 311-318, 2021 11.
Article in English | MEDLINE | ID: mdl-34331462

ABSTRACT

Apolipoprotein A-IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA-IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA-IV signal sequence residues (p.18-43 to p.20-43) in 16/24 trypsin-digested amyloid deposits but in only 1/266 non-ApoA-IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA-IV amyloid was first described, and in plasma from a single cardiac ApoA-IV amyloidosis patient. The most common signal-containing peptide observed in ApoA-IV amyloid, p.20-43, and to a far lesser extent the N-terminal peptide, p.21-43, were fibrillogenic in vitro at physiological pH, generating Congo red-positive fibrils. The addition of a single signal-derived alanine residue to the N-terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA-IV-associated pathologies. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Amyloidosis/pathology , Apolipoproteins A , Protein Sorting Signals , Aged , Female , Humans , Male , Plaque, Amyloid/pathology
3.
Phys Chem Chem Phys ; 24(3): 1630-1637, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34951613

ABSTRACT

The nature of the nanoparticle-protein corona is emerging as a key aspect in determining the impact of nanomaterials on proteins and in general on the biological response. We previously demonstrated that citrate-stabilized gold nanoparticles (Cit-AuNPs) interact with ß2-microglobulin (ß2m) preserving the protein native structure. Moreover, Cit-AuNPs are able to hinder in vitro fibrillogenesis of a ß2m pathologic variant, namely D76N, by reducing the oligomeric association of the protein in solution. Here, we clarify the characteristics of the interaction between ß2m and Cit-AuNPs by means of different techniques, i.e. surface enhanced Raman spectroscopy, NMR and quartz crystal microbalance with dissipation monitoring. All the results obtained clearly show that by simply changing the ionic strength of the medium it is possible to switch from a labile and transient nature of the protein-NP adduct featuring the so-called soft corona, to a more "hard" interaction with a layer of proteins having a longer residence time on the NP surface. This confirms that the interaction between ß2m and Cit-AuNPs is dominated by electrostatic forces which can be tuned by modifying the ionic strength.


Subject(s)
Metal Nanoparticles/chemistry , Protein Corona/chemistry , beta 2-Microglobulin/chemistry , Citrates/chemistry , Gold/chemistry , Mutation , Osmolar Concentration , Static Electricity , beta 2-Microglobulin/genetics
4.
J Biol Chem ; 295(33): 11379-11387, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32571879

ABSTRACT

Systemic amyloidosis caused by extracellular deposition of insoluble fibrils derived from the pathological aggregation of circulating proteins, such as transthyretin, is a severe and usually fatal condition. Elucidation of the molecular pathogenic mechanism of the disease and discovery of effective therapies still represents a challenging medical issue. The in vitro preparation of amyloid fibrils that exhibit structural and biochemical properties closely similar to those of natural fibrils is central to improving our understanding of the biophysical basis of amyloid formation in vivo and may offer an important tool for drug discovery. Here, we compared the morphology and thermodynamic stability of natural transthyretin fibrils with those of fibrils generated in vitro either using the common acidification procedure or primed by limited selective cleavage by plasmin. The free energies for fibril formation were -12.36, -8.10, and -10.61 kcal mol-1, respectively. The fibrils generated via plasmin cleavage were more stable than those prepared at low pH and were thermodynamically and morphologically similar to natural fibrils extracted from human amyloidotic tissue. Determination of thermodynamic stability is an important tool that is complementary to other methods of structural comparison between ex vivo fibrils and fibrils generated in vitro Our finding that fibrils created via an in vitro amyloidogenic pathway are structurally similar to ex vivo human amyloid fibrils does not necessarily establish that the fibrillogenic pathway is the same for both, but it narrows the current knowledge gap between in vitro models and in vivo pathophysiology.


Subject(s)
Amyloid Neuropathies, Familial/pathology , Amyloid/chemistry , Prealbumin/chemistry , Amyloid/genetics , Amyloid/ultrastructure , Amyloid Neuropathies, Familial/genetics , Humans , Mutation , Prealbumin/genetics , Protein Aggregates , Protein Aggregation, Pathological/genetics , Protein Aggregation, Pathological/pathology , Protein Stability , Thermodynamics
5.
Clin Immunol ; 233: 108888, 2021 12.
Article in English | MEDLINE | ID: mdl-34798238

ABSTRACT

Human interferon alpha (hIFN-α) administration constitutes the current FDA approved therapy for chronic Hepatitis B and C virus infections. Additionally, hIFN-α treatment efficacy was recently demonstrated in patients with COVID-19. Thus, hIFN-α constitutes a therapeutic alternative for those countries where vaccination is inaccessible and for people who did not respond effectively to vaccination. However, hIFN-α2b exhibits a short plasma half-life resulting in the occurrence of severe side effects. To optimize the cytokine's pharmacokinetic profile, we developed a hyperglycosylated IFN, referred to as GMOP-IFN. Given the significant number of reports showing neutralizing antibodies (NAb) formation after hIFN-α administration, here we applied the DeFT (De-immunization of Functional Therapeutics) approach to develop functional, de-immunized versions of GMOP-IFN. Two GMOP-IFN variants exhibited significantly reduced ex vivo immunogenicity and null antiproliferative activity, while preserving antiviral function. The results obtained in this work indicate that the new de-immunized GMOP-IFN variants constitute promising candidates for antiviral therapy.


Subject(s)
Hepatitis B, Chronic/immunology , Hepatitis C, Chronic/immunology , Interferon-alpha/immunology , Recombinant Proteins/immunology , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Antiviral Agents/immunology , Antiviral Agents/pharmacology , CHO Cells , COVID-19/immunology , COVID-19/virology , Cattle , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cells, Cultured , Cricetinae , Cricetulus , Drug Stability , HEK293 Cells , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/virology , Humans , Interferon-alpha/genetics , Interferon-alpha/pharmacology , Recombinant Proteins/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/physiology , COVID-19 Drug Treatment
6.
Phys Chem Chem Phys ; 22(29): 17007, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32672261

ABSTRACT

Correction for 'Exploring exchange processes in proteins by paramagnetic perturbation of NMR spectra' by Yamanappa Hunashal et al., Phys. Chem. Chem. Phys., 2020, 22, 6247-6259, DOI: .

7.
Phys Chem Chem Phys ; 22(11): 6247-6259, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32129386

ABSTRACT

The effect of extrinsic paramagnetic probes on NMR relaxation rates for surface mapping of proteins and other biopolymers is a widely investigated and powerful NMR technique. Here we describe a new application of those probes. It relies on the setting of the relaxation delay to generate magnetization equilibrium and off-equilibrium conditions, in order to tailor the extent of steady state signal recovery with and without the water-soluble nitroxide Tempol. With this approach it is possible to identify signals whose relaxation is affected by exchange processes and, from the relative assignments, to map the protein residues involved in association or conformational interconversion processes on a micro-to-millisecond time scale. This finding is confirmed by the comparison with the results obtained from relaxation dispersion measurements. This simple and convenient method allows preliminary inspection to highlight regions where structural or chemical exchange events are operative, in order to focus on quantitative subsequent determinations by transverse relaxation dispersion experiments or analogous NMR relaxation studies, and/or to gain insights into the predictions of calculations.


Subject(s)
Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Proteins/chemistry , Magnetics , Protein Conformation
8.
Molecules ; 25(21)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171781

ABSTRACT

BACKGROUND: The interaction between proteins and nanoparticles is a very relevant subject because of the potential applications in medicine and material science in general. Further interest derives from the amyloidogenic character of the considered protein, ß2-microglobulin (ß2m), which may be regarded as a paradigmatic system for possible therapeutic strategies. Previous evidence showed in fact that gold nanoparticles (AuNPs) are able to inhibit ß2m fibril formation in vitro. METHODS: NMR (Nuclear Magnetic Resonance) and ESR (Electron Spin Resonance) spectroscopy are employed to characterize the paramagnetic perturbation of the extrinsic nitroxide probe Tempol on ß2m in the absence and presence of AuNPs to determine the surface accessibility properties and the occurrence of chemical or conformational exchange, based on measurements conducted under magnetization equilibrium and non-equilibrium conditions. RESULTS: The nitroxide perturbation analysis successfully identifies the protein regions where protein-protein or protein-AuNPs interactions hinder accessibility or/and establish exchange contacts. These information give interesting clues to recognize the fibrillation interface of ß2m and hypothesize a mechanism for AuNPs fibrillogenesis inhibition. CONCLUSIONS: The presented approach can be advantageously applied to the characterization of the interface in protein-protein and protein-nanoparticles interactions.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Nanoparticles/chemistry , Proteins/chemistry , beta 2-Microglobulin/chemistry , Amyloid/chemistry , Cyclic N-Oxides/pharmacology , Dimerization , Electron Spin Resonance Spectroscopy , Gold/chemistry , Metal Nanoparticles/chemistry , Models, Molecular , Protein Domains , Protein Interaction Mapping , Spectrophotometry , Spin Labels
9.
J Biol Chem ; 293(37): 14192-14199, 2018 09 14.
Article in English | MEDLINE | ID: mdl-30018138

ABSTRACT

Systemic amyloidosis is a usually fatal disease caused by extracellular accumulation of abnormal protein fibers, amyloid fibrils, derived by misfolding and aggregation of soluble globular plasma protein precursors. Both WT and genetic variants of the normal plasma protein transthyretin (TTR) form amyloid, but neither the misfolding leading to fibrillogenesis nor the anatomical localization of TTR amyloid deposition are understood. We have previously shown that, under physiological conditions, trypsin cleaves human TTR in a mechano-enzymatic mechanism that generates abundant amyloid fibrils in vitro In sharp contrast, the widely used in vitro model of denaturation and aggregation of TTR by prolonged exposure to pH 4.0 yields almost no clearly defined amyloid fibrils. However, the exclusive duodenal location of trypsin means that this enzyme cannot contribute to systemic extracellular TTR amyloid deposition in vivo Here, we therefore conducted a bioinformatics search for systemically active tryptic proteases with appropriate tissue distribution, which unexpectedly identified plasmin as the leading candidate. We confirmed that plasmin, just as trypsin, selectively cleaves human TTR between residues 48 and 49 under physiological conditions in vitro Truncated and full-length protomers are then released from the native homotetramer and rapidly aggregate into abundant fibrils indistinguishable from ex vivo TTR amyloid. Our findings suggest that physiological fibrinolysis is likely to play a critical role in TTR amyloid formation in vivo Identification of this surprising intersection between two hitherto unrelated pathways opens new avenues for elucidating the mechanisms of TTR amyloidosis, for seeking susceptibility risk factors, and for therapeutic innovation.


Subject(s)
Amyloidosis/metabolism , Plasminogen/metabolism , Prealbumin/metabolism , Amyloid/metabolism , Databases, Protein , Fibrinolysin/metabolism , Humans , Hydrogen-Ion Concentration , In Vitro Techniques , Protein Denaturation , Protein Folding , Proteolysis , Trypsin/metabolism
10.
Biochim Biophys Acta Gen Subj ; 1862(6): 1432-1442, 2018 06.
Article in English | MEDLINE | ID: mdl-29571746

ABSTRACT

BACKGROUND: Many data highlight the benefits of the Mediterranean diet and its main lipid component, extra-virgin olive oil (EVOO). EVOO contains many phenolic compounds that have been found effective against several aging- and lifestyle-related diseases, including neurodegeneration. Oleuropein, a phenolic secoiroid glycoside, is the main polyphenol in the olive oil. It has been reported that the aglycone form of Oleuropein (OleA) interferes in vitro and in vivo with amyloid aggregation of a number of proteins/peptides involved in amyloid, particularly neurodegenerative, diseases avoiding the growth of toxic oligomers and displaying protection against cognitive deterioration. METHODS: In this study, we carried out a cellular and biophysical study on the relationships between the effects of OleA on the aggregation and cell interactions of the D76N ß2-microglobulin (D76N b2m) variant associated with a familial form of systemic amyloidosis with progressive bowel dysfunction and extensive visceral amyloid deposits. RESULTS: Our results indicate that OleA protection against D76N b2m cytotoxicity results from i) a modification of the conformational and biophysical properties of its amyloid fibrils; ii) a modification of the cell bilayer surface properties of exposed cells. CONCLUSIONS: This study reveals that OleA remodels not only D76N b2m aggregates but also the cell membrane interfering with the misfolded proteins-cell membrane association, in most cases an early event triggering amyloid-mediated cytotoxicity. GENERAL SIGNIFICANCE: The data provided in the present article focus on OleA protection, featuring this polyphenol as a promising plant molecule useful against amyloid diseases.


Subject(s)
Acetates/pharmacology , Amyloid/adverse effects , Amyloidosis/prevention & control , Apoptosis/drug effects , Neuroblastoma/drug therapy , Pyrans/pharmacology , Amyloidosis/metabolism , Amyloidosis/pathology , Cyclopentane Monoterpenes , Humans , Membranes, Artificial , Neuroblastoma/metabolism , Neuroblastoma/pathology , Tumor Cells, Cultured , beta 2-Microglobulin/metabolism
11.
Int J Mol Sci ; 19(9)2018 Sep 09.
Article in English | MEDLINE | ID: mdl-30205618

ABSTRACT

Amyloids result from the aggregation of a set of diverse proteins, due to either specific mutations or promoting intra- or extra-cellular conditions. Structurally, they are rich in intermolecular ß-sheets and are the causative agents of several diseases, both neurodegenerative and systemic. It is believed that the most toxic species are small aggregates, referred to as oligomers, rather than the final fibrillar assemblies. Their mechanisms of toxicity are mostly mediated by aberrant interactions with the cell membranes, with resulting derangement of membrane-related functions. Much effort is being exerted in the search for natural antiamyloid agents, and/or in the development of synthetic molecules. Actually, it is well documented that the prevention of amyloid aggregation results in several cytoprotective effects. Here, we portray the state of the art in the field. Several natural compounds are effective antiamyloid agents, notably tetracyclines and polyphenols. They are generally non-specific, as documented by their partially overlapping mechanisms and the capability to interfere with the aggregation of several unrelated proteins. Among rationally designed molecules, we mention the prominent examples of ß-breakers peptides, whole antibodies and fragments thereof, and the special case of drugs with contrasting transthyretin aggregation. In this framework, we stress the pivotal role of the computational approaches. When combined with biophysical methods, in several cases they have helped clarify in detail the protein/drug modes of interaction, which makes it plausible that more effective drugs will be developed in the future.


Subject(s)
Amyloid/metabolism , Protein Aggregates , Protein Aggregation, Pathological/metabolism , Amyloidosis/drug therapy , Amyloidosis/etiology , Amyloidosis/metabolism , Amyloidosis/pathology , Animals , Drug Design , Drug Development , Humans , Lipid Metabolism/drug effects , Molecular Targeted Therapy , Protein Aggregates/drug effects , Protein Aggregation, Pathological/drug therapy
12.
J Biol Chem ; 291(18): 9678-89, 2016 Apr 29.
Article in English | MEDLINE | ID: mdl-26921323

ABSTRACT

The amyloidogenic variant of ß2-microglobulin, D76N, can readily convert into genuine fibrils under physiological conditions and primes in vitro the fibrillogenesis of the wild-type ß2-microglobulin. By Fourier transformed infrared spectroscopy, we have demonstrated that the amyloid transformation of wild-type ß2-microglobulin can be induced by the variant only after its complete fibrillar conversion. Our current findings are consistent with preliminary data in which we have shown a seeding effect of fibrils formed from D76N or the natural truncated form of ß2-microglobulin lacking the first six N-terminal residues. Interestingly, the hybrid wild-type/variant fibrillar material acquired a thermodynamic stability similar to that of homogenous D76N ß2-microglobulin fibrils and significantly higher than the wild-type homogeneous fibrils prepared at neutral pH in the presence of 20% trifluoroethanol. These results suggest that the surface of D76N ß2-microglobulin fibrils can favor the transition of the wild-type protein into an amyloid conformation leading to a rapid integration into fibrils. The chaperone crystallin, which is a mild modulator of the lag phase of the variant fibrillogenesis, potently inhibits fibril elongation of the wild-type even once it is absorbed on D76N ß2-microglobulin fibrils.


Subject(s)
Amyloid/chemistry , Mutation, Missense , Protein Aggregation, Pathological , beta 2-Microglobulin/chemistry , Amino Acid Substitution , Amyloid/genetics , Amyloid/metabolism , Crystallins/chemistry , Crystallins/genetics , Crystallins/metabolism , Humans , Hydrogen-Ion Concentration , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , beta 2-Microglobulin/genetics , beta 2-Microglobulin/metabolism
13.
Clin Immunol ; 176: 31-41, 2017 03.
Article in English | MEDLINE | ID: mdl-28089609

ABSTRACT

Interferon α (IFN-α) exerts potent antiviral, immunomodulatory, and antiproliferative activity and have proven clinical utility in chronic hepatitis B and C virus infections. However, repeated IFN-α administration induces neutralizing antibodies (NAb) against the therapeutic in a significant number of patients. Associations between IFN-α immunogenicity and loss of efficacy have been described. So as to improve the in vivo biological efficacy of IFN-α, a long lasting hyperglycosylated protein (4N-IFN) derived from IFN-α2b wild type (WT-IFN) was developed. However, in silico analysis performed using established in silico methods revealed that 4N-IFN had more T cell epitopes than WT-IFN. In order to develop a safer and more efficient IFN therapy, we applied the DeFT (De-immunization of Functional Therapeutics) approach to producing functional, de-immunized versions of 4N-IFN. Using the OptiMatrix in silico tool in ISPRI, the 4N-IFN sequence was modified to reduce HLA binding potential of specific T cell epitopes. Following verification of predictions by HLA binding assays, eight modifications were selected and integrated in three variants: 4N-IFN(VAR1), (VAR2) and (VAR3). Two of the three variants (VAR1 and VAR3) retained anti-viral function and demonstrated reduced T-cell immunogenicity in terms of T-cell proliferation and Th1 and Th2 cytokine levels, when compared to controls (commercial NG-IFN (non-glycosylated), PEG-IFN, WT-IFN and 4N-IFN). It was previously demonstrated that N-glycosylation improved IFN-α pharmacokinetic properties. Here, we further reduce immunogenicity as measured in vitro using T cell assays and cytokine profiling by modifying the T cell epitope content of a protein (de-immunizing). Taking into consideration the present results and previously reported immunogenicity data for commercial IFN-α2b variants, 4N-IFN(VAR1) and 4N-IFN-4N(VAR3) appear to be promising candidates for improved IFN-α therapy of HCV and HBV.


Subject(s)
Antiviral Agents/immunology , Antiviral Agents/therapeutic use , Interferon-alpha/immunology , Interferon-alpha/therapeutic use , Recombinant Proteins/immunology , Recombinant Proteins/therapeutic use , Adult , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , CHO Cells , Cell Line , Cell Proliferation/drug effects , Cricetulus , Cytokines/immunology , Epitopes, T-Lymphocyte/immunology , Epitopes, T-Lymphocyte/therapeutic use , Female , Glycosylation/drug effects , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/immunology , Hepatitis C/drug therapy , Hepatitis C/immunology , Humans , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Male , Middle Aged , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Young Adult
14.
Proc Natl Acad Sci U S A ; 111(4): 1539-44, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24474780

ABSTRACT

The Ser52Pro variant of transthyretin (TTR) produces aggressive, highly penetrant, autosomal-dominant systemic amyloidosis in persons heterozygous for the causative mutation. Together with a minor quantity of full-length wild-type and variant TTR, the main component of the ex vivo fibrils was the residue 49-127 fragment of the TTR variant, the portion of the TTR sequence that previously has been reported to be the principal constituent of type A, cardiac amyloid fibrils formed from wild-type TTR and other TTR variants [Bergstrom J, et al. (2005) J Pathol 206(2):224-232]. This specific truncation of Ser52Pro TTR was generated readily in vitro by limited proteolysis. In physiological conditions and under agitation the residue 49-127 proteolytic fragment rapidly and completely self-aggregates into typical amyloid fibrils. The remarkable susceptibility to such cleavage is likely caused by localized destabilization of the ß-turn linking strands C and D caused by loss of the wild-type hydrogen-bonding network between the side chains of residues Ser52, Glu54, Ser50, and a water molecule, as revealed by the high-resolution crystallographic structure of Ser52Pro TTR. We thus provide a structural basis for the recently hypothesized, crucial pathogenic role of proteolytic cleavage in TTR amyloid fibrillogenesis. Binding of the natural ligands thyroxine or retinol-binding protein (RBP) by Ser52Pro variant TTR stabilizes the native tetrameric assembly, but neither protected the variant from proteolysis. However, binding of RBP, but not thyroxine, inhibited subsequent fibrillogenesis.


Subject(s)
Amyloid/metabolism , Prealbumin/metabolism , Proline/metabolism , Serine/metabolism , Amino Acid Sequence , Amyloidosis/genetics , Amyloidosis/pathology , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Conformation , Molecular Sequence Data , Phenotype , Prealbumin/chemistry , Prealbumin/genetics , Proteolysis
15.
Biophys J ; 111(9): 2024-2038, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27806283

ABSTRACT

Transthyretin (TTR) amyloidoses are familial or sporadic degenerative conditions that often feature heavy cardiac involvement. Presently, no effective pharmacological therapy for TTR amyloidoses is available, mostly due to a substantial lack of knowledge about both the molecular mechanisms of TTR aggregation in tissue and the ensuing functional and viability modifications that occur in aggregate-exposed cells. TTR amyloidoses are of particular interest regarding the relation between functional and viability impairment in aggregate-exposed excitable cells such as peripheral neurons and cardiomyocytes. In particular, the latter cells provide an opportunity to investigate in parallel the electrophysiological and biochemical modifications that take place when the cells are exposed for various lengths of time to variously aggregated wild-type TTR, a condition that characterizes senile systemic amyloidosis. In this study, we investigated biochemical and electrophysiological modifications in cardiomyocytes exposed to amyloid oligomers or fibrils of wild-type TTR or to its T4-stabilized form, which resists tetramer disassembly, misfolding, and aggregation. Amyloid TTR cytotoxicity results in mitochondrial potential modification, oxidative stress, deregulation of cytoplasmic Ca2+ levels, and Ca2+ cycling. The altered intracellular Ca2+ cycling causes a prolongation of the action potential, as determined by whole-cell recordings of action potentials on isolated mouse ventricular myocytes, which may contribute to the development of cellular arrhythmias and conduction alterations often seen in patients with TTR amyloidosis. Our data add information about the biochemical, functional, and viability alterations that occur in cardiomyocytes exposed to aggregated TTR, and provide clues as to the molecular and physiological basis of heart dysfunction in sporadic senile systemic amyloidosis and familial amyloid cardiomyopathy forms of TTR amyloidoses.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Electrophysiological Phenomena , Myocytes, Cardiac/metabolism , Prealbumin/chemistry , Prealbumin/metabolism , Protein Aggregates , Animals , Calcium/metabolism , Cytoplasm/metabolism , Heart Ventricles/cytology , Humans , Mice , Mice, Inbred C57BL
16.
J Cell Mol Med ; 20(8): 1443-56, 2016 08.
Article in English | MEDLINE | ID: mdl-26990223

ABSTRACT

The first genetic variant of ß2 -microglobulin (b2M) associated with a familial form of systemic amyloidosis has been recently described. The mutated protein, carrying a substitution of Asp at position 76 with an Asn (D76N b2M), exhibits a strongly enhanced amyloidogenic tendency to aggregate with respect to the wild-type protein. In this study, we characterized the D76N b2M aggregation path and performed an unprecedented analysis of the biochemical mechanisms underlying aggregate cytotoxicity. We showed that, contrarily to what expected from other amyloid studies, early aggregates of the mutant are not the most toxic species, despite their higher surface hydrophobicity. By modulating ganglioside GM1 content in cell membrane or synthetic lipid bilayers, we confirmed the pivotal role of this lipid as aggregate recruiter favouring their cytotoxicity. We finally observed that the aggregates bind to the cell membrane inducing an alteration of its elasticity (with possible functional unbalance and cytotoxicity) in GM1-enriched domains only, thus establishing a link between aggregate-membrane contact and cell damage.


Subject(s)
Amyloid/toxicity , Mutant Proteins/toxicity , beta 2-Microglobulin/toxicity , Biophysical Phenomena/drug effects , Calcium/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Membrane/drug effects , Cell Membrane/metabolism , Diffusion , G(M1) Ganglioside , Humans , Lipid Bilayers/metabolism , Microscopy, Atomic Force , Protein Aggregates/drug effects , Reactive Oxygen Species/metabolism
17.
J Biol Chem ; 289(6): 3318-27, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24338476

ABSTRACT

To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N ß2-microglobulin (ß2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N ß2m. Using biophysical and structural approaches, we show that the MHCI containing D76N ß2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type ß2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N ß2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N ß2m degradation within the cell. Accordingly, D76N ß2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.


Subject(s)
Amyloid/metabolism , Histocompatibility Antigens Class I/metabolism , Mutation, Missense , beta 2-Microglobulin/metabolism , Amino Acid Substitution , Amyloid/genetics , Animals , Crystallography, X-Ray , Histocompatibility Antigens Class I/genetics , Humans , Mice , Mice, Transgenic , beta 2-Microglobulin/genetics
18.
N Engl J Med ; 366(24): 2276-83, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22693999

ABSTRACT

We describe a kindred with slowly progressive gastrointestinal symptoms and autonomic neuropathy caused by autosomal dominant, hereditary systemic amyloidosis. The amyloid consists of Asp76Asn variant ß(2)-microglobulin. Unlike patients with dialysis-related amyloidosis caused by sustained high plasma concentrations of wild-type ß(2)-microglobulin, the affected members of this kindred had normal renal function and normal circulating ß(2)-microglobulin values. The Asp76Asn ß(2)-microglobulin variant was thermodynamically unstable and remarkably fibrillogenic in vitro under physiological conditions. Previous studies of ß(2)-microglobulin aggregation have not shown such amyloidogenicity for single-residue substitutions. Comprehensive biophysical characterization of the ß(2)-microglobulin variant, including its 1.40-Å, three-dimensional structure, should allow further elucidation of fibrillogenesis and protein misfolding.


Subject(s)
Amyloidosis, Familial/genetics , beta 2-Microglobulin/genetics , Amyloidosis, Familial/complications , Diarrhea/etiology , Female , Genes, Dominant , Humans , Male , Middle Aged , Pedigree , Protein Structure, Quaternary , Proteome/genetics , Sjogren's Syndrome/complications , Sjogren's Syndrome/genetics , beta 2-Microglobulin/chemistry
19.
Electrophoresis ; 36(19): 2465-72, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26084573

ABSTRACT

Free solution capillary electrophoresis with UV detection is here used to retrieve information on the conformational changes of wild-type ß2 -microglobulin and a series of naturally and artificially created variants known to have different stability and amyloidogenic potential. Under nondenaturing conditions, the resolution of at least two folding conformers at equilibrium is obtained and a third species is detected for the less stable isoforms. Partial denaturation by using chaotropic agents such as acetonitrile or trifluoroethanol reveals that the separated peaks are at equilibrium, as the presence of less structured species is either enhanced or induced at the expenses of the native form. Reproducible CE data allow to obtain an interesting semiquantitative correlation between the peak areas observed and the protein stability. Thermal unfolding over the range 25-42°C is induced inside the capillary for the two pathogenic proteins (wtß2 -microglobulin and D76N variant): the large differences observed upon small temperature variation draw attention on the robustness of analytical methods when dealing with proteins prone to misfolding and aggregation.


Subject(s)
Amyloid/analysis , Amyloid/chemistry , Electrophoresis, Capillary/methods , beta 2-Microglobulin/analysis , beta 2-Microglobulin/chemistry , Amyloid/metabolism , Protein Folding , Protein Isoforms/analysis , Protein Isoforms/chemistry , Protein Isoforms/metabolism , Protein Stability , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , beta 2-Microglobulin/metabolism
20.
J Biol Chem ; 288(24): 17844-58, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23645685

ABSTRACT

The interaction at neutral pH between wild-type and a variant form (R3A) of the amyloid fibril-forming protein ß2-microglobulin (ß2m) and the molecular chaperone αB-crystallin was investigated by thioflavin T fluorescence, NMR spectroscopy, and mass spectrometry. Fibril formation of R3Aß2m was potently prevented by αB-crystallin. αB-crystallin also prevented the unfolding and nonfibrillar aggregation of R3Aß2m. From analysis of the NMR spectra collected at various R3Aß2m to αB-crystallin molar subunit ratios, it is concluded that the structured ß-sheet core and the apical loops of R3Aß2m interact in a nonspecific manner with the αB-crystallin. Complementary information was derived from NMR diffusion coefficient measurements of wild-type ß2m at a 100-fold concentration excess with respect to αB-crystallin. Mass spectrometry acquired in the native state showed that the onset of wild-type ß2m oligomerization was effectively reduced by αB-crystallin. Furthermore, and most importantly, αB-crystallin reversibly dissociated ß2m oligomers formed spontaneously in aged samples. These results, coupled with our previous studies, highlight the potent effectiveness of αB-crystallin in preventing ß2m aggregation at the various stages of its aggregation pathway. Our findings are highly relevant to the emerging view that molecular chaperone action is intimately involved in the prevention of in vivo amyloid fibril formation.


Subject(s)
alpha-Crystallin B Chain/chemistry , beta 2-Microglobulin/chemistry , Amyloid/chemistry , Benzothiazoles , Fluorescent Dyes/chemistry , Humans , Kinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Protein Stability , Spectrometry, Mass, Electrospray Ionization , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL