Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mycorrhiza ; 34(3): 159-171, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38625427

ABSTRACT

Climate change and global warming have contributed to increase terrestrial drought, causing negative impacts on agricultural production. Drought stress may be addressed using novel agronomic practices and beneficial soil microorganisms, such as arbuscular mycorrhizal fungi (AMF), able to enhance plant use efficiency of soil resources and water and increase plant antioxidant defence systems. Specific traits functional to plant resilience improvement in dry conditions could have developed in AMF growing in association with xerophytic plants in maritime sand dunes, a drought-stressed and low-fertility environment. The most studied of such plants are European beachgrass (Ammophila arenaria Link), native to Europe and the Mediterranean basin, and American beachgrass (Ammophila breviligulata Fern.), found in North America. Given the critical role of AMF for the survival of these beachgrasses, knowledge of the composition of AMF communities colonizing their roots and rhizospheres and their distribution worldwide is fundamental for the location and isolation of native AMF as potential candidates to be tested for promoting crop growth and resilience under climate change. This review provides quantitative and qualitative data on the occurrence of AMF communities of A. arenaria and A. breviligulata growing in European, Mediterranean basin and North American maritime sand dunes, as detected by morphological studies, trap culture isolation and molecular methods, and reports on their symbiotic performance. Moreover, the review indicates the dominant AMF species associated with the two Ammophila species and the common species to be further studied to assess possible specific traits increasing their host plants resilience toward drought stress under climate change.


Subject(s)
Climate Change , Mycorrhizae , Symbiosis , Mycorrhizae/physiology , Europe , North America , Soil Microbiology , Droughts , Sand/microbiology
2.
Food Microbiol ; 92: 103598, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32950139

ABSTRACT

The fungal microbiota usually growing on the cheese surface during ripening processes promote rind formation and the development of organoleptic characteristics, imparting positive sensory attributes to cheeses. As cheese contamination may also occur by undesirable molds, specific actions for preventing their growth are usually realized in dairy industries by using the antibiotic natamycin, which may represent a risk factor for human health and environmental sustainability. Here, agroindustrial by-products with natural antimicrobial properties, i.e. tannins and chitosan, were tested in a cheese-making trial producing PDO Tuscan pecorino cheese. Morphological and molecular methods revealed that the main components of rind fungal communities of PDO Tuscan pecorino cheese were represented by P. solitum, P. discolour and P. verrucosum. The use of chitosan on cheese rinds did not significantly affect the composition of rind fungal communities developing during the whole ripening process compared with controls treated with natamycin, whose numbers ranged from 3.4 ± 1.3 × 103 to 3.2 ± 1.8 × 104 and from 6.3 ± 3.5 × 102 to 4.0 ± 1.5 × 104, respectively. Overall, grape marc tannins and chitosan did not significantly affect the number and composition of fungal communities developing during PDO Pecorino Toscano cheese ripening, as well as its physical, chemical and nutritional profiles, showing that they may represent effective alternatives to the antibiotic natamycin.


Subject(s)
Antifungal Agents/pharmacology , Cheese/microbiology , Chitosan/pharmacology , Fungi/drug effects , Mycobiome/drug effects , Plant Extracts/pharmacology , Tannins/pharmacology , Cheese/analysis , Food Contamination/analysis , Food Microbiology , Fungi/growth & development , Humans , Italy , Vitis/chemistry
3.
Mycorrhiza ; 30(5): 589-600, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32533256

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with plant roots, facilitating mineral nutrient transfer from soil to hosts through large networks of extraradical hyphae. Limited data are available on the fungal structures (appressoria) connecting soil- to root-based mycelium, in relation to plant nutrition. Two in vivo systems were set up using three AMF, Funneliformis mosseae, Funneliformis coronatus and Rhizoglomus irregulare, grown in symbiosis with Cichorium intybus. The assessment of plant P content, number of appressoria, diameter of their subtending hyphae and length of colonized roots allowed calculation of the total cross-section area of appressorium-subtending hyphae, which differed among the three AMF and was correlated with plant P contents and with extraradical mycelium density. A conservative evaluation of P fluxes from soil- to plant-based hyphae occurring through appressoria gave values ranging from 1.7 to 4.2 × 10-8 mol cm-2 s-1 (moles per total cross-section area of the appressorium subtending hyphae per time elapsed), depending on AMF identity. This work suggests that, beyond intraradical colonization and extraradical mycelium extent, connections between extraradical and intraradical fungal mycelium through appressoria are important for mycorrhizal plant nutrition, as appressorium structural traits and density can be related to P transfer mediated by AMF.


Subject(s)
Mycorrhizae , Hyphae , Phosphorus , Plant Roots , Soil
4.
Mycorrhiza ; 30(2-3): 373-387, 2020 May.
Article in English | MEDLINE | ID: mdl-32227272

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) play a fundamental role in plant growth and nutrition in natural and agricultural ecosystems. Despite the importance of such symbionts, the different developmental changes occurring during the AMF life cycle have not been fully elucidated at the molecular level. Here, the RNA-seq approach was used to investigate Rhizoglomus irregulare specific and common transcripts at two different time points of mycorrhizal establishment in Helianthus annuus in vivo. Four days after inoculation, transcripts related to cellular remodeling (actin and tubulin), cellular signaling (calmodulin, serine/threonine protein kinase, 14-3-3 protein, and calcium transporting ATPase), lipid metabolism (fatty acid desaturation, steroid hormone, and glycerophospholipid biosynthesis), and biosynthetic processes were detected. In addition to such transcripts, 16 days after inoculation, expressed genes linked to binding and catalytic activities; ion (K+, Ca2+, Fe2+, Zn2+, Mn2+, Pi, ammonia), sugar, and lipid transport; and those involved in vacuolar polyphosphate accumulation were found. Knowledge of transcriptomic changes required for symbiosis establishment and performance is of great importance to understand the functional role of AMF symbionts in food crop nutrition and health, and in plant diversity in natural ecosystems.


Subject(s)
Glomeromycota , Helianthus , Mycorrhizae , Ecosystem , Plant Roots , RNA-Seq , Symbiosis
5.
Mycorrhiza ; 30(1): 161-170, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31974639

ABSTRACT

Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that may associate with grapevine roots, improving stress tolerance, growth, and nutrition. AM fungi and PGPR enhance the production of plant secondary metabolites, including volatile organic compounds (VOCs) that play a key role in the interaction of plants with the environment and are involved in defence mechanisms. The aim of this study was to analyse the effects of an AM fungus and a rhizobacterium on plant growth and VOCs in Vitis vinifera cv. Cabernet Sauvignon roots to gain insight into the potential role of plant-rhizosphere microorganisms in vine growth and defence. Grapevines were inoculated or not with the AM fungus Funneliformis mosseae IN101 and/or the plant growth-promoting rhizobacterium Ensifer meliloti TSA41. Both microbial strains enhanced plant growth. Fifty-eight VOCs extracted from ground roots were identified using headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. VOCs were induced by F. mosseae IN101, increasing up to 87% compared with control plants. Monoterpenes were strongly enhanced by F. mosseae IN101, increasing up to 113% compared with control plants. Interestingly, monoterpene alcohols related to plant defence, such as myrtenol, p-cymen-7-ol, and p-mentha-1.8-dien-7-ol were increased. By contrast, E. meliloti TSA41 did not significantly affect VOCs. The knowledge of the effects of AM fungi and PGPR on grapevine VOCs may contribute to an integrated and sustainable management of vineyards.


Subject(s)
Glomeromycota , Mycorrhizae , Vitis , Volatile Organic Compounds , Plant Roots
6.
Mycorrhiza ; 30(2-3): 389-396, 2020 May.
Article in English | MEDLINE | ID: mdl-32215759

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) absorb and translocate nutrients from soil to their host plants by means of a wide network of extraradical mycelium (ERM). Here, we assessed whether nitrogen-fixing rhizobia can be transferred to the host legume Glycine max by ERM produced by Glomus formosanum isolate CNPAB020 colonizing the grass Urochloa decumbens. An H-bridge experimental system was developed to evaluate the migration of ERM and of the GFP-tagged Bradyrhizobium diazoefficiens USDA 110 strain across an air gap compartment. Mycorrhizal colonization, nodule formation in legumes, and occurrence of the GFP-tagged strain in root nodules were assessed by optical and confocal laser scanning microscopy. In the presence of non-mycorrhizal U. decumbens, legume roots were neither AMF-colonized nor nodulated. In contrast, G. formosanum ERM crossing the discontinuous compartment connected mycorrhizal U. decumbens and G. max roots, which showed 30-42% mycorrhizal colonization and 7-11 nodules per plant. Fluorescent B. diazoefficiens cells were detected in 94% of G. max root nodules. Our findings reveal that, besides its main activity in nutrient transfer, ERM produced by AMF may facilitate bacterial translocation and the simultaneous associations of plants with beneficial fungi and bacteria, representing an important structure, functional to the establishment of symbiotic relationships.


Subject(s)
Fabaceae , Mycorrhizae , Bacteria , Nitrogen , Plant Roots , Symbiosis
7.
Food Microbiol ; 82: 560-572, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31027819

ABSTRACT

Hákarl is produced by curing of the Greenland shark (Somniosus microcephalus) flesh, which before fermentation is toxic due to the high content of trimethylamine (TMA) or trimethylamine N-oxide (TMAO). Despite its long history of consumption, little knowledge is available on the microbial consortia involved in the fermentation of this fish. In the present study, a polyphasic approach based on both culturing and DNA-based techniques was adopted to gain insight into the microbial species present in ready-to-eat hákarl. To this aim, samples of ready-to-eat hákarl were subjected to viable counting on different selective growth media. The DNA directly extracted from the samples was further subjected to Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and 16S amplicon-based sequencing. Moreover, the presence of Shiga toxin-producing Escherichia coli (STEC) and Pseudomonas aeruginosa was assessed via qualitative real-time PCR assays. pH values measured in the analyzed samples ranged from between 8.07 ±â€¯0.06 and 8.76 ±â€¯0.00. Viable counts revealed the presence of total mesophilic aerobes, lactic acid bacteria and Pseudomonadaceae. Regarding bacteria, PCR-DGGE analysis highlighted the dominance of close relatives of Tissierella creatinophila. For amplicon sequencing, the main operational taxonomic units (OTUs) shared among the data set were Tissierella, Pseudomonas, Oceanobacillus, Abyssivirga and Lactococcus. The presence of Pseudomonas in the analyzed samples supports the hypothesis of a possible role of this microorganism on the detoxification of shark meat from TMAO or TMA during fermentation. Several minor OTUs (<1%) were also detected, including Alkalibacterium, Staphylococcus, Proteiniclasticum, Acinetobacter, Erysipelothrix, Anaerobacillus, Ochrobactrum, Listeria and Photobacterium. Analysis of the yeast and filamentous fungi community composition by PCR-DGGE revealed the presence of close relatives of Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida zeylanoides, Saccharomyces cerevisiae, Debaryomyces, Torulaspora, Yamadazyma, Sporobolomyces, Alternaria, Cladosporium tenuissimum, Moristroma quercinum and Phoma/Epicoccum, and some of these species probably play key roles in the development of the sensory qualities of the end product. Finally, qualitative real-time PCR assays revealed the absence of STEC and Pseudomonas aeruginosa in all of the analyzed samples.


Subject(s)
Fermented Foods/microbiology , Food Microbiology , Microbiota , Seafood/microbiology , Sharks , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fermentation , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Hydrogen-Ion Concentration , Iceland , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
8.
Mycorrhiza ; 29(4): 341-349, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31190279

ABSTRACT

The extraradical mycelium (ERM) produced by arbuscular mycorrhizal fungi is fundamental for the maintenance of biological fertility in agricultural soils, representing an important inoculum source, together with spores and mycorrhizal root fragments. Its viability and structural traits, such as density, extent and interconnectedness, which are positively correlated with the growth and nutrition of host plants, may be affected by different agronomic practices, including the use of pesticides and by different mycorrhizospheric communities. This work, carried out using a whole-plant experimental model system, showed that structural traits of ERM, such as length and density, were strongly decreased by the herbicides dicamba and glufosinolate and the fungicides benomyl and fenhexamid, while anastomosis frequency and hyphal branching were differentially modulated by singly inoculated mycorrhizospheric bacteria, depending on their identity.


Subject(s)
Bacterial Physiological Phenomena , Cichorium intybus/microbiology , Fungicides, Industrial/pharmacology , Glomeromycota/drug effects , Glomeromycota/growth & development , Herbicides/pharmacology , Mycelium/growth & development , Mycorrhizae/drug effects , Bacteria/genetics , Bacteria/isolation & purification , Benomyl/pharmacology , Cichorium intybus/growth & development , Dicamba/pharmacology , Hyphae/drug effects , Hyphae/growth & development , Mycelium/drug effects , Mycorrhizae/growth & development , Plant Roots/growth & development , Plant Roots/microbiology , Spores, Bacterial/genetics , Spores, Bacterial/isolation & purification , Spores, Bacterial/physiology
9.
Mycorrhiza ; 28(8): 773-778, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29938366

ABSTRACT

Most beneficial services provided by arbuscular mycorrhizal fungi (AMF), encompassing improved crop performance and soil resource availability, are mediated by AMF-associated bacteria, showing key-plant growth-promoting (PGP) traits, i.e., the production of indole acetic acid, siderophores and antibiotics, and activities increasing the availability of plant nutrients by nitrogen fixation and phosphate mobilization. Such functions may be affected by the ability of AMF-associated bacteria to communicate through the production and secretion of extracellular small diffusible chemical signals, N-acyl homoserine lactone signal molecules (AHLs), that regulate bacterial behavior at the community level (quorum sensing, QS). This work investigated the occurrence and extent of QS among rhizobia isolated from AMF spores, using two different QS reporter strains, Agrobacterium tumefaciens NTL4 pZRL4 and Chromobacterium violaceum CV026. We also assessed the quorum quenching (QQ) activity among Bacillus isolated from the same AMF spores. Most rhizobia were found to be quorum-signaling positive, including six isolates producing very high levels of AHLs. The results were confirmed by microtiter plate assay, which detected 65% of the tested bacteria as medium/high AHL producers. A 16S rDNA sequence analysis grouped the rhizobia into two clusters, consistent with the QS phenotype. None of the tested bacteria showed QQ activity able to disrupt the QS signaling, suggesting the absence of antagonism among bacteria living in AMF sporosphere. Our results provide the first evidence of the ability of AMF-associated rhizobia to communicate through QS, suggesting further studies on the potential importance of such a behavior in association with key-plant growth-promoting functions.


Subject(s)
Acyl-Butyrolactones/metabolism , Mycorrhizae/physiology , Quorum Sensing , Rhizobium/metabolism , Antibiosis , Bacillus/isolation & purification , Bacillus/metabolism , Nitrogen Fixation , RNA, Ribosomal, 16S/genetics , Rhizobium/genetics , Spores/genetics , Spores/metabolism
10.
Mycorrhiza ; 28(4): 329-341, 2018 May.
Article in English | MEDLINE | ID: mdl-29574495

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are widespread, important plant symbionts. They absorb and translocate mineral nutrients from the soil to host plants through an extensive extraradical mycelium, consisting of indefinitely large networks of nonseptate, multinucleated hyphae which may be interconnected by hyphal fusions (anastomoses). This work investigated whether different lineages of the same isolate may lose the ability to establish successful anastomoses, becoming vegetatively incompatible, when grown separately. The occurrence of hyphal incompatibility among five lineages of Funneliformis mosseae, originated from the same ancestor isolate and grown in vivo for more than 20 years in different European locations, was assessed by systematic detection of anastomosis frequency and cytological studies. Anastomosis frequencies ranged from 60 to 80% within the same lineage and from 17 to 44% among different lineages. The consistent detection of protoplasm continuity and nuclei in perfect fusions showed active protoplasm flow both within and between lineages. In pairings between different lineages, post-fusion incompatible reactions occurred in 6-48% of hyphal contacts and pre-fusion incompatibility in 2-17%. Molecular fingerprinting profiles showed genetic divergence among lineages, with overall Jaccard similarity indices ranging from 0.85 to 0.95. Here, phenotypic divergence among the five F. mosseae lineages was demonstrated by the reduction of their ability to form anastomosis and the detection of high levels of vegetative incompatibility. Our data suggest that potential genetic divergence may occur in AMF over only 20 years and represent the basis for detailed studies on the relationship between genes regulating anastomosis formation and hyphal compatibility in AMF.


Subject(s)
DNA, Fungal/analysis , Glomeromycota/genetics , Phenotype , Selection, Genetic , DNA Fingerprinting , Glomeromycota/growth & development , Hyphae/growth & development
11.
Mycorrhiza ; 27(7): 659-668, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28573458

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 µg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.


Subject(s)
Cichorium intybus/microbiology , Gene Expression Profiling/methods , Glomeromycota/genetics , Mycorrhizae/genetics , Transcriptome , Cichorium intybus/physiology , Mycorrhizae/physiology
12.
Mycorrhiza ; 26(4): 325-32, 2016 May.
Article in English | MEDLINE | ID: mdl-26630971

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) live in symbiosis with most plant species and produce underground extraradical hyphal networks functional in the uptake and translocation of mineral nutrients from the soil to host plants. This work investigated whether fungal genotype can affect patterns of interconnections and structural traits of extraradical mycelium (ERM), by comparing three Glomeraceae species growing in symbiosis with five plant hosts. An isolate of Funneliformis coronatus consistently showed low ability to form interconnected ERM and self-incompatibility that represented up to 21% of hyphal contacts. The frequency of post-fusion self-incompatible interactions, never detected before in AMF extraradical networks, was 8.9%. In F. coronatus ERM, the percentage of hyphal contacts leading to perfect hyphal fusions was 1.2-7.7, while it ranged from 25.8-48 to 35.6-53.6 in Rhizophagus intraradices and Funneliformis mosseae, respectively. Low interconnectedness of F. coronatus ERM resulted also from a very high number of non-interacting contacts (83.2%). Such findings show that AMF genotypes in Glomeraceae can differ significantly in anastomosis behaviour and that ERM interconnectedness is modulated by the fungal symbiont, as F. coronatus consistently formed poorly interconnected networks when growing in symbiosis with five different host plants and in the asymbiotic stage. Structural traits, such as extent, density and hyphal self-compatibility/incompatibility, may represent key factors for the differential performance of AMF, by affecting fungal absorbing surface and foraging ability and thus nutrient flow from soil to host roots.


Subject(s)
Glomeromycota/growth & development , Hyphae/growth & development , Mycorrhizae/growth & development , Plants/microbiology , Glomeromycota/classification , Glomeromycota/physiology , Hyphae/classification , Hyphae/genetics , Mycorrhizae/classification , Mycorrhizae/physiology , Plant Physiological Phenomena , Symbiosis
13.
Mycorrhiza ; 26(7): 699-707, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27179537

ABSTRACT

In recent years, arbuscular mycorrhizal fungi (AMF) have been reported to enhance plant biosynthesis of secondary metabolites with health-promoting activities, such as polyphenols, carotenoids, vitamins, anthocyanins, flavonoids and lycopene. In addition, plant growth-promoting (PGP) bacteria were shown to modulate the concentration of nutraceutical compounds in different plant species. This study investigated for the first time whether genes encoding key enzymes of the biochemical pathways leading to the production of rosmarinic acid (RA), a bioactive compound showing antioxidant, antibacterial, antiviral and anti-inflammatory properties, were differentially expressed in Ocimum basilicum (sweet basil) inoculated with AMF or selected PGP bacteria, by using quantitative real-time reverse transcription PCR. O. basilicum plants were inoculated with either the AMF species Rhizophagus intraradices or a combination of two PGP bacteria isolated from its sporosphere, Sinorhizobium meliloti TSA41 and Streptomyces sp. W43N. Present data show that the selected PGP bacteria were able to trigger the overexpression of tyrosine amino-transferase (TAT), hydroxyphenylpyruvate reductase (HPPR) and p-coumaroyl shikimate 3'-hydroxylase isoform 1 (CS3'H iso1) genes, 5.7-fold, 2-fold and 2.4-fold, respectively, in O. basilicum leaves. By contrast, inoculation with R. intraradices triggered TAT upregulation and HPPR and CS3'H iso1 downregulation. Our data suggest that inoculation with the two selected strains of PGP bacteria utilised here could represent a suitable biotechnological tool to be implemented for the production of O. basilicum plants with increased levels of key enzymes for the biosynthesis of RA, a compound showing important functional properties as related to human health.


Subject(s)
Bacteria/metabolism , Cinnamates/metabolism , Depsides/metabolism , Glomeromycota/physiology , Ocimum basilicum/metabolism , Ocimum basilicum/microbiology , Cinnamates/chemistry , Depsides/chemistry , Gene Expression Regulation, Plant , Molecular Structure , Plant Proteins/genetics , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Ribosomal, 18S/genetics , RNA, Ribosomal, 18S/metabolism , Ubiquitin/genetics , Ubiquitin/metabolism , Rosmarinic Acid
14.
Electrophoresis ; 35(11): 1535-46, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25025092

ABSTRACT

Fresh fruits and vegetables are largely investigated for their content in vitamins, mineral nutrients, dietary fibers, and plant secondary metabolites, collectively called phytochemicals, which play a beneficial role in human health. Quantity and quality of phytochemicals may be detected by using different analytical techniques, providing accurate quantification and identification of single molecules, along with their molecular structures, and allowing metabolome analyses of plant-based foods. Phytochemicals concentration and profiles are affected by biotic and abiotic factors linked to plant genotype, crop management, harvest season, soil quality, available nutrients, light, and water. Soil health and biological fertility play a key role in the production of safe plant foods, as a result of the action of beneficial soil microorganisms, in particular of the root symbionts arbuscular mycorrhizal fungi. They improve plant nutrition and health and induce changes in secondary metabolism leading to enhanced biosynthesis of health-promoting phytochemicals, such as polyphenols, carotenoids, flavonoids, phytoestrogens, and to a higher activity of antioxidant enzymes. In this review we discuss reports on health-promoting phytochemicals and analytical methods used for their identification and quantification in plants, and on arbuscular mycorrhizal fungi impact on fruits and vegetables nutritional and nutraceutical value.


Subject(s)
Dietary Supplements/analysis , Mycorrhizae , Phytochemicals/analysis , Plant Physiological Phenomena , Plants/microbiology , Symbiosis , Animals , Chromatography, High Pressure Liquid/methods , Fruit/chemistry , Fruit/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Mass Spectrometry/methods , Mycorrhizae/chemistry , Mycorrhizae/physiology , Mycorrhizae/ultrastructure , Phytochemicals/metabolism , Plants/chemistry , Vegetables/chemistry , Vegetables/metabolism
15.
Mycorrhiza ; 23(4): 325-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23314797

ABSTRACT

Hyphal anastomoses which play a key role in the formation of interconnected mycorrhizal networks and in genetic exchange among compatible individuals have been studied in a limited number of species and isolates of arbuscular mycorrhizal fungi (AMF), mainly in symbiotic mycelium. In this work, the occurrence and frequency of anastomosis between hyphae of the same and different germlings were assessed in tropical isolates belonging to Acaulospora, Claroideoglomus, Gigaspora, Glomus, Rhizophagus and Scutellospora. Germlings belonging to Acaulospora, Claroideoglomus, Glomus and Rhizophagus formed perfect hyphal fusions, with frequencies ranging from 9.29 ± 3.01 to 79.84 ± 4.39 % within the same germling and from 14.02 ± 7.36 to 91.41 ± 3.92 % between different germlings. Rare fusions, occurring within the same hypha, were detected in Gigaspora species, and no anastomoses were observed in Scutellospora species. The consistent detection of nuclei in perfect fusions suggests that nuclear migration is active both within and between germlings. Present data on anastomosis formation, nuclear migration and germling viability in tropical isolates of AMF widen our knowledge on the extensive and consistent occurrence of successful hyphal fusions in this group of beneficial symbionts. The ability to anastomose and establish protoplasm flow, fundamental for the maintenance of physiological and genetic continuity, may produce important fitness consequences for the obligately biotrophic AMF.


Subject(s)
Glomeromycota/growth & development , Mycorrhizae/growth & development , Glomeromycota/classification , Glomeromycota/genetics , Hyphae/classification , Hyphae/genetics , Hyphae/growth & development , Mycorrhizae/classification , Mycorrhizae/genetics , Soil Microbiology , Spores, Fungal/classification , Spores, Fungal/genetics , Spores, Fungal/growth & development , Tropical Climate
16.
Front Plant Sci ; 14: 1240310, 2023.
Article in English | MEDLINE | ID: mdl-38023909

ABSTRACT

The sustainable intensification of maize-based systems may reduce greenhouse-gas emissions and the excessive use of non-renewable inputs. Considering the key role that the microbiological fertility has on crop growth and resilience, it is worth of interest studying the role of cropping system on the rhizosphere bacterial communities, that affect soil health and biological soil fertility. In this work we monitored and characterized the diversity and composition of native rhizosphere bacterial communities during the early growth phases of two maize genotypes of different early vigor, using a nitrogen (N)-phosphorus (P) starter fertilization and a biostimulant seed treatment, in a growth chamber experiment, by polymerase chain reaction-denaturing gradient gel electrophoresis of partial 16S rRNA gene and amplicon sequencing. Cluster analyses showed that the biostimulant treatment affected the rhizosphere bacterial microbiota of the ordinary hybrid more than that of the early vigor, both at plant emergence and at the 5-leaf stage. Moreover, the diversity indices calculated from the community profiles, revealed significant effects of NP fertilization on richness and the estimated effective number of species (H2) in both maize genotypes, while the biostimulant had a positive effect on plant growth promoting community of the ordinary hybrid, both at the plant emergence and at the fifth leaf stage. Our data showed that maize genotype was the major factor shaping rhizosphere bacterial community composition suggesting that the root system of the two maize hybrids recruited a different microbiota. Moreover, for the first time, we identified at the species and genus level the predominant native bacteria associated with two maize hybrids differing for vigor. These results pave the way for further studies to be performed on the effects of cropping system and specific crop practices, considering also the application of biostimulants, on beneficial rhizosphere microorganisms.

17.
Environ Sci Pollut Res Int ; 30(19): 56207-56223, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36917375

ABSTRACT

The increased ultraviolet radiation (UV) due to the altered stratospheric ozone leads to multiple plant physiological and biochemical adaptations, likely affecting their interaction with other organisms, such as pests and pathogens. Arbuscular mycorrhizal fungi (AMF) and UV-B treatment can be used as eco-friendly techniques to protect crops from pests by activating plant mechanisms of resistance. In this study, we investigated plant (Lactuca sativa) response to UV-B exposure and Funneliformis mosseae (IMA1) inoculation as well as the role of a major insect pest, Spodoptera littoralis. Lettuce plants exposed to UV-B were heavier and taller than non-irradiated ones. A considerable enrichment in phenolic, flavonoid, anthocyanin, and carotenoid contents and antioxidant capacity, along with redder and more homogenous leaf color, were also observed in UV-B-treated but not in AMF-inoculated plants. Biometric and biochemical data did not differ between AMF and non-AMF plants. AMF-inoculated plants showed hyphae, arbuscules, vesicles, and spores in their roots. AMF colonization levels were not affected by UV-B irradiation. No changes in S. littoralis-feeding behavior towards treated and untreated plants were observed, suggesting the ability of this generalist herbivore to overcome the plant chemical defenses boosted by UV-B exposure. The results of this multi-factorial study shed light on how polyphagous insect pests can cope with multiple plant physiological and biochemical adaptations following biotic and abiotic preconditioning.


Subject(s)
Mycorrhizae , Animals , Mycorrhizae/physiology , Lactuca , Ultraviolet Rays , Plant Roots/metabolism , Spodoptera , Plant Leaves/chemistry
18.
New Phytol ; 194(3): 810-822, 2012 May.
Article in English | MEDLINE | ID: mdl-22380845

ABSTRACT

• Inoculation of crop plants by non-native strains of arbuscular mycorrhizal (AM) fungi as bio-enhancers is promoted without clear evidence for symbiotic effectiveness and fungal persistence. To address such gaps, the forage legume Medicago sativa was inoculated in an agronomic field trial with two isolates of Funneliformis mosseae differing in their nuclear rDNA sequences from native strains. • The inoculants were traced by PCR with a novel combination of the universal fungal NS31 and Glomeromycota-specific LSUGlom1 primers which target the nuclear rDNA cistron. The amplicons were classified by restriction fragment length polymorphism and sequencing. • The two applied fungal inoculants were successfully traced and discriminated from native strains in roots sampled from the field up to 2 yr post inoculation. Moreover, field inoculation with inocula of non-native isolates of F. mosseae appeared to have stimulated root colonization and yield of M. sativa. • Proof of inoculation success and sustained positive effects on biomass production and quality of M. sativa crop plants hold promise for the role that AM fungal inoculants could play in agriculture.


Subject(s)
Glomeromycota/physiology , Medicago sativa/microbiology , Mycorrhizae/physiology , Agricultural Inoculants , Agriculture , Base Sequence , Biomass , Crops, Agricultural , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genetic Markers/genetics , Glomeromycota/genetics , Glomeromycota/growth & development , Medicago sativa/genetics , Medicago sativa/growth & development , Medicago sativa/physiology , Molecular Sequence Data , Mycorrhizae/genetics , Mycorrhizae/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/microbiology , Plant Roots/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/microbiology , Plant Shoots/physiology , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA , Species Specificity , Symbiosis
19.
Mycorrhiza ; 22(2): 81-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22075570

ABSTRACT

Soil fungi play a crucial role in producing fundamental ecosystem services such as soil fertility, formation and maintenance, nutrient cycling and plant community dynamics. However, they have received little attention in the field of conservation biology. Arbuscular mycorrhizal fungi (AMF) are beneficial soil symbionts fulfilling a key function in the complex networks of belowground/aboveground biotic interactions as they live in association with the roots of most (80%) land plant families and influence not only soil fertility but also plant nutrition, diversity and productivity. The diversity of AMF communities can decline due to habitat loss and anthropogenic disturbance, especially in agro-ecosystems, and many valuable ecotypes could become extinct before they are even discovered. Consequently, long-term strategies are urgently needed to ensure their conservation in habitats where they naturally occur and have evolved. Protected areas, where living organisms are under the care of national and international authorities, represent an appropriate place for the in situ conservation of AMF, providing them with adapted situations together with established complex networks of interactions with different components within each specific ecosystem. Here, we review data available about the main present-day threats to AMF and the current state of knowledge about their occurrence in protected sites worldwide, providing a checklist of national parks and nature reserves where they have been reported. The aim was to offer a strategic perspective to increase awareness of the importance of conserving these beneficial plant symbionts and of preserving their biodiversity in the years to come.


Subject(s)
Conservation of Natural Resources , Fungi/physiology , Mycorrhizae/physiology , Soil Microbiology , Biodiversity , Fungi/isolation & purification , Mycorrhizae/isolation & purification , Plant Roots/microbiology , Plant Roots/physiology , Symbiosis
20.
Sci Rep ; 12(1): 21279, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482115

ABSTRACT

Food production is heavily dependent on soil phosphorus (P), a non-renewable mineral resource essential for plant growth and development. Alas, about 80% is unavailable for plant uptake. Arbuscular mycorrhizal fungi may promote soil P efficient use, although the mechanistic aspects are yet to be completely understood. In this study, plant and fungal variables involved in P acquisition were investigated in maize inbred lines, differing for mycorrhizal responsiveness and low-P tolerance, when inoculated with the symbiont Rhizoglomus irregulare (synonym Rhizophagus irregularis). The expression patterns of phosphate transporter (PT) genes in extraradical and intraradical mycelium (ERM/IRM) and in mycorrhizal and control maize roots were assessed, together with plant growth responses and ERM extent and structure. The diverse maize lines differed in plant and fungal accumulation patterns of PT transcripts, ERM phenotypic traits and plant performance. Mycorrhizal plants of the low-P tolerant maize line Mo17 displayed increased expression of roots and ERM PT genes, compared with the low-P susceptible line B73, which revealed larger ERM hyphal densities and interconnectedness. ERM structural traits showed significant correlations with plant/fungal expression levels of PT genes and mycorrhizal host benefit, suggesting that both structural and functional traits are differentially involved in the regulation of P foraging capacity in mycorrhizal networks.


Subject(s)
Mycorrhizae , Zea mays , Phosphate Transport Proteins/genetics , Zea mays/genetics , Zea mays/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL