ABSTRACT
BACKGROUND: Interleukin-27 (IL-27) can trigger both pro- and anti-inflammatory responses. This cytokine is elevated in the central nervous system (CNS) of multiple sclerosis (MS) patients, but how it influences neuroinflammatory processes remains unclear. As astrocytes express the receptor for IL-27, we sought to determine how these glial cells respond to this cytokine and whether such exposure alters their interactions with infiltrating activated T lymphocytes. To determine whether inflammation shapes the impact of IL-27, we compared the effects of this cytokine in non-inflamed and inflamed conditions induced by an IL-1ß exposure. MAIN BODY: Transcriptomic analysis of IL-27-exposed human astrocytes showed an upregulation of multiple immune genes. Human astrocytes increased the secretion of chemokines (CXCL9, CXCL10, and CXCL11) and the surface expression of proteins (PD-L1, HLA-E, and ICAM-1) following IL-27 exposure. To assess whether exposure of astrocytes to IL-27 influences the profile of activated T lymphocytes infiltrating the CNS, we used an astrocyte/T lymphocyte co-culture model. Activated human CD4+ or CD8+ T lymphocytes were co-cultured with astrocytes that have been either untreated or pre-exposed to IL27 or IL-1ß. After 24 h, we analyzed T lymphocytes by flow cytometry for transcription factors and immune molecules. The contact with IL-27-exposed astrocytes increased the percentages of T-bet, Eomes, CD95, IL-18Rα, ICAM-1, and PD-L1 expressing CD4+ and CD8+ T lymphocytes and reduced the proportion of CXCR3-positive CD8+ T lymphocytes. Human CD8+ T lymphocytes co-cultured with human IL-27-treated astrocytes exhibited higher motility than when in contact with untreated astrocytes. These results suggested a preponderance of kinapse-like over synapse-like interactions between CD8+ T lymphocytes and IL-27-treated astrocytes. Finally, CD8+ T lymphocytes from MS patients showed higher motility in contact with IL-27-exposed astrocytes compared to healthy donors' cells. CONCLUSION: Our results establish that IL-27 alters the immune functions of human astrocytes and shapes the profile and motility of encountered T lymphocytes, especially CD8+ T lymphocytes from MS patients.
Subject(s)
Interleukin-27 , Multiple Sclerosis , Astrocytes/metabolism , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Interleukin-27/metabolism , InterleukinsABSTRACT
BACKGROUND: A definitive diagnosis of multiple sclerosis (MS), as distinct from a clinically isolated syndrome, requires one of two conditions: a second clinical attack or particular magnetic resonance imaging (MRI) findings as defined by the McDonald criteria. MRI is also important after a diagnosis is made as a means of monitoring subclinical disease activity. While a standardized protocol for diagnostic and follow-up MRI has been developed by the Consortium of Multiple Sclerosis Centres, acceptance and implementation in Canada have been suboptimal. METHODS: To improve diagnosis, monitoring, and management of a clinically isolated syndrome and MS, a Canadian expert panel created consensus recommendations about the appropriate application of the 2010 McDonald criteria in routine practice, strategies to improve adherence to the standardized Consortium of Multiple Sclerosis Centres MRI protocol, and methods for ensuring effective communication among health care practitioners, in particular referring physicians, neurologists, and radiologists. RESULTS: This article presents eight consensus statements developed by the expert panel, along with the rationale underlying the recommendations and commentaries on how to prioritize resource use within the Canadian healthcare system. CONCLUSIONS: The expert panel calls on neurologists and radiologists in Canada to incorporate the McDonald criteria, the Consortium of Multiple Sclerosis Centres MRI protocol, and other guidance given in this consensus presentation into their practices. By improving communication and general awareness of best practices for MRI use in MS diagnosis and monitoring, we can improve patient care across Canada by providing timely diagnosis, informed management decisions, and better continuity of care.
Subject(s)
Magnetic Resonance Imaging/methods , Multiple Sclerosis/diagnosis , Brain/pathology , Canada , Clinical Protocols , Consensus , Contrast Media , Gadolinium , Humans , Monitoring, Physiologic , Multiple Sclerosis/pathology , Multiple Sclerosis/physiopathologyABSTRACT
BACKGROUND: T lymphocytes exhibit numerous alterations in relapsing-remitting (RRMS), secondary progressive (SPMS), and primary progressive multiple sclerosis (PPMS). The NKG2D pathway has been involved in MS pathology. NKG2D is a co-activating receptor on subsets of CD4+ and most CD8+ T lymphocytes. The ligands of NKG2D are expressed at low levels in normal tissues but are elevated in MS postmortem brain tissues compared with controls. Whether the NKG2D pathway shows specific changes in different forms of MS remains unclear. METHODS: We performed unsupervised and supervised flow cytometry analysis to characterize peripheral blood T lymphocytes from RRMS, SPMS, and PPMS patients and healthy controls (HC). We used an in vitro microscopy approach to assess the role of NKG2D in the interactions between human CD8+T lymphocytes and human astrocytes. RESULTS: Specific CD8+, CD4+, and CD4-CD8- T cell populations exhibited altered frequency in MS patients' subgroups. The proportion of NKG2D+ T lymphocytes declined with age in PPMS patients but not in RRMS and HC. This reduced percentage of NKG2D+ cells was due to lower abundance of γδ and αß CD4-CD8- T lymphocytes in PPMS patients. NKG2D+ T lymphocytes were significantly less abundant in RRMS than in HC; this was caused by a decreased frequency of CD4-CD8- and CD8+ T lymphocytes and was not linked to age. Blocking NKG2D increased the motility of CD8+ T lymphocytes co-cultured with astrocytes expressing NKG2D ligand. Moreover, preventing NKG2D from interacting with its ligands increased the proportion of CD8+ T lymphocytes exhibiting a kinapse-like behavior characterized by short-term interaction while reducing those displaying a long-lasting synapse-like behavior. These results support that NKG2D participates in the establishment of long-term interactions between activated CD8+ T lymphocytes and astrocytes. CONCLUSION: Our data demonstrate specific alterations in NKG2D+ T lymphocytes in MS patients' subgroups and suggest that NKG2D contributes to the interactions between human CD8+ T lymphocytes and human astrocytes.
Subject(s)
Multiple Sclerosis, Chronic Progressive , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , NK Cell Lectin-Like Receptor Subfamily K/metabolism , CD8-Positive T-LymphocytesABSTRACT
Despite significant insights into the neural mechanisms of acute placebo responses, less is known about longer-term placebo responses, such as those seen in clinical trials, or their interactions with brain disease. We examined brain correlates of placebo responses in a randomized trial of a then controversial and now disproved endovascular treatment for multiple sclerosis. Patients received either balloon or sham extracranial venoplasty and were followed for 48 weeks. Venoplasty had no therapeutic effect, but a subset of both venoplasty- and sham-treated patients reported a transient improvement in health-related quality of life, suggesting a placebo response. Placebo responders did not differ from non-responders in total MRI T2 lesion load, count or location, nor were there differences in normalized brain volume, regional grey or white matter volume or cortical thickness (CT). However, responders had higher lesion activity. Graph theoretical analysis of CT covariance showed that non-responders had a more small-world-like CT architecture. In non-responders, lesion load was inversely associated with CT in somatosensory, motor and association areas, precuneus, and insula, primarily in the right hemisphere. In responders, lesion load was unrelated to CT. The neuropathological process in MS may produce in some a cortical configuration less capable of generating sustained placebo responses.
Subject(s)
Cerebral Cortex/pathology , Multiple Sclerosis/pathology , Multiple Sclerosis/psychology , Placebo Effect , Adolescent , Adult , Aged , Cerebral Cortex/diagnostic imaging , Diffusion Tensor Imaging , Endovascular Procedures/methods , Female , Humans , Male , Middle Aged , Multiple Sclerosis/surgery , Organ Size , Quality of Life , Randomized Controlled Trials as Topic , Young AdultABSTRACT
OBJECTIVE: To determine the safety and efficacy of balloon vs sham venoplasty of narrowing of the extracranial jugular and azygos veins in multiple sclerosis (MS). METHODS: Patients with relapsing or progressive MS were screened using clinical and ultrasound criteria. After confirmation of >50% narrowing by venography, participants were randomized 1:1 to receive balloon or sham venoplasty of all stenoses and were followed for 48 weeks. Participants and research staff were blinded to intervention allocation. The primary safety outcome was the number of adverse events (AEs) during 48 weeks. The primary efficacy outcome was the change from baseline to week 48 in the patient-reported outcome MS Quality of Life-54 (MSQOL-54) questionnaire. Standardized clinical and MRI outcomes were also evaluated. RESULTS: One hundred four participants were randomized (55 sham; 49 venoplasty) and 103 completed 48 weeks of follow-up. Twenty-three sham and 21 venoplasty participants reported at least 1 AE; one sham (2%) and 5 (10%) venoplasty participants had a serious AE. The mean improvement in MSQOL-54 physical score was +1.3 (sham) and +1.4 (venoplasty) (p = 0.95); MSQOL-54 mental score was +1.2 (sham) and -0.8 (venoplasty) (p = 0.55). CONCLUSIONS: Our data do not support the continued use of venoplasty of extracranial jugular and/or azygous venous narrowing to improve patient-reported outcomes, chronic MS symptoms, or the disease course of MS. CLINICALTRIALSGOV IDENTIFIER: NCT01864941. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for patients with MS, balloon venoplasty of extracranial jugular and azygous veins is not beneficial in improving patient-reported, standardized clinical, or MRI outcomes.