Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Arterioscler Thromb Vasc Biol ; 42(10): 1262-1271, 2022 10.
Article in English | MEDLINE | ID: mdl-36047410

ABSTRACT

BACKGROUND: In mice, GPR146 (G-protein-coupled receptor 146) deficiency reduces plasma lipids and protects against atherosclerosis. Whether these findings translate to humans is unknown. METHODS: Common and rare genetic variants in the GPR146 gene locus were used as research instruments in the UK Biobank. The Lifelines, The Copenhagen-City Heart Study, and a cohort of individuals with familial hypobetalipoproteinemia were used to find and study rare GPR146 variants. RESULTS: In the UK Biobank, carriers of the common rs2362529-C allele present with lower low-density lipoprotein cholesterol, apo (apolipoprotein) B, high-density lipoprotein cholesterol, apoAI, CRP (C-reactive protein), and plasma liver enzymes compared with noncarriers. Carriers of the common rs1997243-G allele, associated with higher GPR146 expression, present with the exact opposite phenotype. The associations with plasma lipids of the above alleles are allele dose-dependent. Heterozygote carriers of a rare coding variant (p.Pro62Leu; n=2615), predicted to be damaging, show a stronger reductions in the above parameters compared with carriers of the common rs2362529-C allele. The p.Pro62Leu variant is furthermore shown to segregate with low low-density lipoprotein cholesterol in a family with familial hypobetalipoproteinemia. Compared with controls, carriers of the common rs2362529-C allele show a marginally reduced risk of coronary artery disease (P=0.03) concomitant with a small effect size on low-density lipoprotein cholesterol (average decrease of 2.24 mg/dL in homozygotes) of this variant. Finally, mendelian randomization analyses suggest a causal relationship between GPR146 gene expression and plasma lipid and liver enzyme levels. CONCLUSIONS: This study shows that carriers of new genetic GPR146 variants have a beneficial cardiometabolic risk profile, but it remains to be shown whether genetic or pharmaceutical inhibition of GPR146 protects against atherosclerosis in humans.


Subject(s)
Atherosclerosis , Hypobetalipoproteinemias , Animals , Apolipoproteins B/genetics , Atherosclerosis/genetics , Atherosclerosis/prevention & control , C-Reactive Protein , Cholesterol, HDL , Cholesterol, LDL , Humans , Hypobetalipoproteinemias/genetics , Mice , Pharmaceutical Preparations , Receptors, G-Protein-Coupled/genetics
2.
Eur Heart J ; 40(37): 3081-3094, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31114854

ABSTRACT

AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.


Subject(s)
Brugada Syndrome/genetics , Mutation, Missense , Myocytes, Cardiac/pathology , ras Proteins/genetics , Action Potentials/genetics , Adult , Brugada Syndrome/pathology , Brugada Syndrome/physiopathology , Cytoskeleton/genetics , Cytoskeleton/pathology , Female , Genetic Markers , Genetic Predisposition to Disease , Humans , Male , Myocytes, Cardiac/physiology
3.
Am J Physiol Heart Circ Physiol ; 315(5): H1250-H1257, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30118344

ABSTRACT

Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.


Subject(s)
Ion Channel Gating/genetics , Mutation , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Sodium/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , HEK293 Cells , Heart Rate/genetics , Humans , Markov Chains , Membrane Potentials , Models, Biological , Protein Multimerization , Protein Transport , Time Factors
4.
Stem Cell Res ; 77: 103396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522388

ABSTRACT

Mutations in the DES gene, which encodes the intermediate filament desmin, lead to desminopathy, a rare disease characterized by skeletal muscle weakness and different forms of cardiomyopathies associated with cardiac conduction defects and arrhythmias. We generated human induced pluripotent stem cells (hiPSC) from a patient carrying the DES p.R406W mutation, and employed CRISPR/Cas9 to rectify the mutation in the patient's hiPSC line and introduced the mutation in an hiPSC line from a control individual unrelated to the patient. These hiPSC lines represent useful models for delving into the mechanisms of desminopathy and developing new therapeutic approaches.


Subject(s)
Desmin , Induced Pluripotent Stem Cells , Mutation , Induced Pluripotent Stem Cells/metabolism , Humans , Desmin/metabolism , Desmin/genetics , Cell Line , CRISPR-Cas Systems , Gene Knock-In Techniques , Cell Differentiation
5.
Stem Cell Res ; 72: 103205, 2023 10.
Article in English | MEDLINE | ID: mdl-37734317

ABSTRACT

Elevated circulating lipoprotein(a) (Lp(a)) is a genetically determined risk factor for coronary artery disease and aortic valve stenosis (Tsimikas, 2017). Importantly, the LPA gene, which encodes the apolipoprotein(a) (protein-component of Lp(a)), is missing in most species, and human liver cell-lines do not secrete Lp(a). There is a need for the development of human in vitro models suitable for investigating biological mechanisms involved in Lp(a) metabolism. We here generated and characterized iPSCs from a patient with extremely high Lp(a) plasma levels genetically determined (Coassin et al., 2022). This unique cellular model offers great opportunities and new perspectives for investigations on biological mechanisms involved in Lp(a) metabolism.


Subject(s)
Aortic Valve Stenosis , Coronary Artery Disease , Induced Pluripotent Stem Cells , Humans , Lipoprotein(a)/genetics , Lipoprotein(a)/metabolism , Aortic Valve/metabolism , Induced Pluripotent Stem Cells/metabolism , Aortic Valve Stenosis/etiology , Aortic Valve Stenosis/genetics , Coronary Artery Disease/etiology , Coronary Artery Disease/genetics , Risk Factors
6.
Stem Cell Res ; 60: 102721, 2022 04.
Article in English | MEDLINE | ID: mdl-35247835

ABSTRACT

Dyslipidemia is a key modifiable causal risk factor involved in the development of atherosclerotic cardiovascular disease. Recently, the G protein-coupled receptor 146 (GPR146), a member of the G-coupled protein receptors' family, has been shown to be a regulator of plasma cholesterol. Inhibition of hepatic GPR146 in mice displays protective effect against both hypercholesterolemia and atherosclerosis. Here, we characterize a genetically engineered human induced pluripotent stem cell (hiPSC) model invalidated for GPR146 (ITXi001-A-1) using CRISPR-Cas9 editing technology. Differentiation of ITXi001-A-1 towards hepatic fate will provide a suitable model for deciphering the molecular mechanisms sustaining the beneficial metabolic effects of GPR146 inhibition.


Subject(s)
Induced Pluripotent Stem Cells , Animals , CRISPR-Cas Systems/genetics , Cell Differentiation , Humans , Induced Pluripotent Stem Cells/metabolism , Liver , Mice
7.
Stem Cell Res ; 59: 102649, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34995842

ABSTRACT

Catecholamine-induced QT prolongation (CIQTP) is an inherited cardiac disease characterized by a normal baseline ECG and a risk of sudden cardiac death by ventricular arrhythmia due to a QT prolongation that only appears during catecholergic stimulation, especially mental stress. Induced pluripotent stem cells (hiPSCs) were generated from peripheral blood mononuclear cells collected from two CIQTP-affected patients from two different families. These two hiPSC lines are a valuable model to study biological alterations due to CIQTP.

8.
Cells ; 11(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36497174

ABSTRACT

Human heart development is governed by transcription factor (TF) networks controlling dynamic and temporal gene expression alterations. Therefore, to comprehensively characterize these transcriptional regulations, day-to-day transcriptomic profiles were generated throughout the directed cardiac differentiation, starting from three distinct human- induced pluripotent stem cell lines from healthy donors (32 days). We applied an expression-based correlation score to the chronological expression profiles of the TF genes, and clustered them into 12 sequential gene expression waves. We then identified a regulatory network of more than 23,000 activation and inhibition links between 216 TFs. Within this network, we observed previously unknown inferred transcriptional activations linking IRX3 and IRX5 TFs to three master cardiac TFs: GATA4, NKX2-5 and TBX5. Luciferase and co-immunoprecipitation assays demonstrated that these five TFs could (1) activate each other's expression; (2) interact physically as multiprotein complexes; and (3) together, finely regulate the expression of SCN5A, encoding the major cardiac sodium channel. Altogether, these results unveiled thousands of interactions between TFs, generating multiple robust hypotheses governing human cardiac development.


Subject(s)
Gene Regulatory Networks , Heart , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Regulation , Cell Differentiation/genetics
9.
Stem Cell Res ; 60: 102688, 2022 04.
Article in English | MEDLINE | ID: mdl-35101670

ABSTRACT

Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) is an exercise and emotional stress-induced life-threatening inherited heart rhythm disorder, characterized by an abnormal cellular calcium homeostasis. Most reported cases have been linked to mutations in the gene encoding the type 2 ryanodine receptor gene, RYR2. We generated induced pluripotent stem cells (hiPSCs) from peripheral blood mononuclear cells (PBMC) from three CPVT-affected patients, two of them carrying p.R4959Q mutation and one carrying p.Y2476D mutation. These generated hiPSC lines are a useful model to study pathophysiological consequences of RYR2 dysfunction in humans and the molecular basis of CPVT.


Subject(s)
Induced Pluripotent Stem Cells , Calcium/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Mutation/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Tachycardia, Ventricular
10.
Stem Cell Res ; 58: 102627, 2022 01.
Article in English | MEDLINE | ID: mdl-34929443

ABSTRACT

Studies on animal models have shown that Irx5 is an important regulator of cardiac development and that it regulates ventricular electrical repolarization gradient in the adult heart. Mutations in IRX5 have also been linked in humans to cardiac conduction defects. In order to fully characterize the role of IRX5 during cardiac development and in cardiomyocyte function, we generated three genetically-modified human induced pluripotent stem cell lines: two knockout lines (heterozygous and homozygous) and a knockin HA-tagged line (homozygous).


Subject(s)
Induced Pluripotent Stem Cells , Animals , CRISPR-Cas Systems/genetics , Heterozygote , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Homozygote , Humans , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
STAR Protoc ; 3(4): 101680, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36115027

ABSTRACT

This manuscript proposes an efficient and reproducible protocol for the generation of genetically modified human induced pluripotent stem cells (hiPSCs) by genome editing using CRISPR-Cas9 technology. Here, we describe the experimental strategy for generating knockout (KO) and knockin (KI) clonal populations of hiPSCs using single-cell sorting by flow cytometry. We efficiently achieved up to 15 kb deletions, molecular tag insertions, and single-nucleotide editing in hiPSCs. We emphasize the efficacy of this approach in terms of cell culture time. For complete details on the use and execution of this protocol, please refer to Canac et al. (2022) and Bray et al. (2022).


Subject(s)
Gene Editing , Induced Pluripotent Stem Cells , Humans , Gene Editing/methods , CRISPR-Cas Systems , Clone Cells , Cell Culture Techniques
12.
Stem Cell Res ; 59: 102647, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34999420

ABSTRACT

Four human induced pluripotent stem cell (hiPSC) lines have been generated from healthy control European donors, and validated. This resource represents a useful tool for stem cell-based research, as references for developmental studies and disease modeling linked to any type of human tissue and organ, in an ethnical-, sex- and age-matched context. They providea reliable in-vitro model for single cell- and tissue-based investigations, and are also a valuable tool for genome editing-based studies.

13.
Stem Cell Reports ; 16(12): 2958-2972, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34739847

ABSTRACT

Proprotein convertase subtilisin kexin type 9 (PCSK9) is a key regulator of low-density lipoprotein (LDL) cholesterol metabolism and the target of lipid-lowering drugs. PCSK9 is mainly expressed in hepatocytes. Here, we show that PCSK9 is highly expressed in undifferentiated human induced pluripotent stem cells (hiPSCs). PCSK9 inhibition in hiPSCs with the use of short hairpin RNA (shRNA), CRISPR/cas9-mediated knockout, or endogenous PCSK9 loss-of-function mutation R104C/V114A unveiled its new role as a potential cell cycle regulator through the NODAL signaling pathway. In fact, PCSK9 inhibition leads to a decrease of SMAD2 phosphorylation and hiPSCs proliferation. Conversely, PCSK9 overexpression stimulates hiPSCs proliferation. PCSK9 can interfere with the NODAL pathway by regulating the expression of its endogenous inhibitor DACT2, which is involved in transforming growth factor (TGF) ß-R1 lysosomal degradation. Using different PCSK9 constructs, we show that PCSK9 interacts with DACT2 through its Cys-His-rich domain (CHRD) domain. Altogether these data highlight a new role of PCSK9 in cellular proliferation and development.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Nodal Protein/metabolism , Proprotein Convertase 9/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/metabolism , Cell Differentiation , Cell Line , Cell Membrane/metabolism , Cell Proliferation , Gene Expression Regulation , Humans , Loss of Function Mutation , Nodal Protein/genetics , Phosphorylation , Proprotein Convertase 9/chemistry , Proprotein Convertase 9/deficiency , Proprotein Convertase 9/genetics , Protein Binding , Protein Domains , Receptors, Transforming Growth Factor beta/metabolism , Smad2 Protein/metabolism , Up-Regulation
14.
Cardiovasc Res ; 117(9): 2092-2107, 2021 07 27.
Article in English | MEDLINE | ID: mdl-32898233

ABSTRACT

AIMS: Several inherited arrhythmic diseases have been linked to single gene mutations in cardiac ion channels and interacting proteins. However, the mechanisms underlying most arrhythmias, are thought to involve altered regulation of the expression of multiple effectors. In this study, we aimed to examine the role of a transcription factor (TF) belonging to the Iroquois homeobox family, IRX5, in cardiac electrical function. METHODS AND RESULTS: Using human cardiac tissues, transcriptomic correlative analyses between IRX5 and genes involved in cardiac electrical activity showed that in human ventricular compartment, IRX5 expression strongly correlated to the expression of major actors of cardiac conduction, including the sodium channel, Nav1.5, and Connexin 40 (Cx40). We then generated human-induced pluripotent stem cells (hiPSCs) derived from two Hamamy syndrome-affected patients carrying distinct homozygous loss-of-function mutations in IRX5 gene. Cardiomyocytes derived from these hiPSCs showed impaired cardiac gene expression programme, including misregulation in the control of Nav1.5 and Cx40 expression. In accordance with the prolonged QRS interval observed in Hamamy syndrome patients, a slower ventricular action potential depolarization due to sodium current reduction was observed on electrophysiological analyses performed on patient-derived cardiomyocytes, confirming the functional role of IRX5 in electrical conduction. Finally, a cardiac TF complex was newly identified, composed by IRX5 and GATA4, in which IRX5 potentiated GATA4-induction of SCN5A expression. CONCLUSION: Altogether, this work unveils a key role for IRX5 in the regulation of human ventricular depolarization and cardiac electrical conduction, providing therefore new insights into our understanding of cardiac diseases.


Subject(s)
Action Potentials , Arrhythmias, Cardiac/genetics , Bone Diseases/genetics , Heart Ventricles/metabolism , Homeodomain Proteins/genetics , Hypertelorism/genetics , Induced Pluripotent Stem Cells/metabolism , Intellectual Disability/genetics , Loss of Function Mutation , Myocytes, Cardiac/metabolism , Myopia/genetics , Transcription Factors/genetics , Animals , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Bone Diseases/metabolism , Bone Diseases/physiopathology , Cells, Cultured , Connexins/genetics , Connexins/metabolism , GATA4 Transcription Factor/genetics , GATA4 Transcription Factor/metabolism , Heart Rate , Homeodomain Proteins/metabolism , Humans , Hypertelorism/metabolism , Hypertelorism/physiopathology , Intellectual Disability/metabolism , Intellectual Disability/physiopathology , Male , Mice, Inbred C57BL , Myopia/metabolism , Myopia/physiopathology , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Transcription Factors/metabolism , Transcriptome , Gap Junction alpha-5 Protein
15.
Cardiovasc Res ; 113(5): 464-474, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28339646

ABSTRACT

AIMS: Loss-of-function mutations in SCN5A, the gene encoding NaV1.5 channel, have been associated with inherited progressive cardiac conduction disease (PCCD). We have proposed that Scn5a heterozygous knock-out (Scn5a+/-) mice, which are characterized by ventricular fibrotic remodelling with ageing, represent a model for PCCD. Our objectives were to identify the molecular pathway involved in fibrosis development and prevent its activation. METHODS AND RESULTS: Our study shows that myocardial interstitial fibrosis occurred in Scn5a+/- mice only after 45 weeks of age. Fibrosis was triggered by transforming growth factor ß (TGF-ß) pathway activation. Younger Scn5a+/- mice were characterized by a higher connexin 43 expression than wild-type (WT) mice. After the age of 45 weeks, connexin 43 expression decreased in both WT and Scn5a+/- mice, although the decrease was larger in Scn5a+/- mice. Chronic inhibition of cardiac sodium current with flecainide (50 mg/kg/day p.o) in WT mice from the age of 6 weeks to the age of 60 weeks did not lead to TGF-ß pathway activation and fibrosis. Chronic inhibition of TGF-ß receptors with GW788388 (5 mg/kg/day p.o.) in Scn5a+/- mice from the age of 45 weeks to the age of 60 weeks prevented the occurrence of fibrosis. However, current data could not detect reduction in QRS duration with GW788388. CONCLUSION: Myocardial fibrosis secondary to a loss of NaV1.5 is triggered by TGF-ß signalling pathway. Those events are more likely secondary to the decreased NaV1.5 sarcolemmal expression rather than the decreased Na+ current per se. TGF-ß receptor inhibition prevents age-dependent development of ventricular fibrosis in Scn5a+/- mouse.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Benzamides/pharmacology , Cardiomyopathies/prevention & control , Heart Conduction System/drug effects , Heart Ventricles/drug effects , Pyrazoles/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Ventricular Remodeling/drug effects , Age Factors , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Connexin 43/metabolism , Disease Models, Animal , Female , Fibrosis , Flecainide/pharmacology , Genetic Predisposition to Disease , Heart Conduction System/metabolism , Heart Conduction System/physiopathology , Heart Rate , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Heterozygote , Kinetics , Male , Membrane Potentials , Mice, 129 Strain , Mice, Knockout , NAV1.5 Voltage-Gated Sodium Channel/deficiency , NAV1.5 Voltage-Gated Sodium Channel/genetics , Phenotype , Receptors, Transforming Growth Factor beta/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism , Voltage-Gated Sodium Channel Blockers/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL