Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nature ; 515(7527): 365-70, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409825

ABSTRACT

The basic body plan and major physiological axes have been highly conserved during mammalian evolution, yet only a small fraction of the human genome sequence appears to be subject to evolutionary constraint. To quantify cis- versus trans-acting contributions to mammalian regulatory evolution, we performed genomic DNase I footprinting of the mouse genome across 25 cell and tissue types, collectively defining ∼8.6 million transcription factor (TF) occupancy sites at nucleotide resolution. Here we show that mouse TF footprints conjointly encode a regulatory lexicon that is ∼95% similar with that derived from human TF footprints. However, only ∼20% of mouse TF footprints have human orthologues. Despite substantial turnover of the cis-regulatory landscape, nearly half of all pairwise regulatory interactions connecting mouse TF genes have been maintained in orthologous human cell types through evolutionary innovation of TF recognition sequences. Furthermore, the higher-level organization of mouse TF-to-TF connections into cellular network architectures is nearly identical with human. Our results indicate that evolutionary selection on mammalian gene regulation is targeted chiefly at the level of trans-regulatory circuitry, enabling and potentiating cis-regulatory plasticity.


Subject(s)
Conserved Sequence/genetics , Evolution, Molecular , Mammals/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , DNA Footprinting , Gene Expression Regulation, Developmental/genetics , Gene Regulatory Networks/genetics , Humans , Mice
2.
Nature ; 489(7414): 75-82, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955617

ABSTRACT

DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , DNA Footprinting , DNA Methylation , DNA-Binding Proteins/metabolism , Deoxyribonuclease I/metabolism , Evolution, Molecular , Genomics , Humans , Mutation Rate , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Initiation Site , Transcription, Genetic
3.
Nature ; 489(7414): 83-90, 2012 Sep 06.
Article in English | MEDLINE | ID: mdl-22955618

ABSTRACT

Regulatory factor binding to genomic DNA protects the underlying sequence from cleavage by DNase I, leaving nucleotide-resolution footprints. Using genomic DNase I footprinting across 41 diverse cell and tissue types, we detected 45 million transcription factor occupancy events within regulatory regions, representing differential binding to 8.4 million distinct short sequence elements. Here we show that this small genomic sequence compartment, roughly twice the size of the exome, encodes an expansive repertoire of conserved recognition sequences for DNA-binding proteins that nearly doubles the size of the human cis-regulatory lexicon. We find that genetic variants affecting allelic chromatin states are concentrated in footprints, and that these elements are preferentially sheltered from DNA methylation. High-resolution DNase I cleavage patterns mirror nucleotide-level evolutionary conservation and track the crystallographic topography of protein-DNA interfaces, indicating that transcription factor structure has been evolutionarily imprinted on the human genome sequence. We identify a stereotyped 50-base-pair footprint that precisely defines the site of transcript origination within thousands of human promoters. Finally, we describe a large collection of novel regulatory factor recognition motifs that are highly conserved in both sequence and function, and exhibit cell-selective occupancy patterns that closely parallel major regulators of development, differentiation and pluripotency.


Subject(s)
DNA Footprinting , DNA/genetics , Encyclopedias as Topic , Genome, Human/genetics , Molecular Sequence Annotation , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Deoxyribonuclease I/metabolism , Genomic Imprinting , Genomics , Humans , Polymorphism, Single Nucleotide/genetics , Transcription Initiation Site
4.
Science ; 346(6212): 1007-12, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25411453

ABSTRACT

To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes.


Subject(s)
Conserved Sequence , DNA/genetics , Evolution, Molecular , Regulatory Sequences, Nucleic Acid/genetics , Transcription Factors/metabolism , Animals , Base Sequence , Deoxyribonuclease I , Genome, Human , Humans , Mice , Restriction Mapping
5.
Science ; 337(6099): 1190-5, 2012 Sep 07.
Article in English | MEDLINE | ID: mdl-22955828

ABSTRACT

Genome-wide association studies have identified many noncoding variants associated with common diseases and traits. We show that these variants are concentrated in regulatory DNA marked by deoxyribonuclease I (DNase I) hypersensitive sites (DHSs). Eighty-eight percent of such DHSs are active during fetal development and are enriched in variants associated with gestational exposure-related phenotypes. We identified distant gene targets for hundreds of variant-containing DHSs that may explain phenotype associations. Disease-associated variants systematically perturb transcription factor recognition sequences, frequently alter allelic chromatin states, and form regulatory networks. We also demonstrated tissue-selective enrichment of more weakly disease-associated variants within DHSs and the de novo identification of pathogenic cell types for Crohn's disease, multiple sclerosis, and an electrocardiogram trait, without prior knowledge of physiological mechanisms. Our results suggest pervasive involvement of regulatory DNA variation in common human disease and provide pathogenic insights into diverse disorders.


Subject(s)
DNA/genetics , Disease/genetics , Genetic Variation , Polymorphism, Single Nucleotide , Regulatory Elements, Transcriptional , Regulatory Sequences, Nucleic Acid , Transcription Factors/metabolism , Alleles , Chromatin/metabolism , Chromatin/ultrastructure , Crohn Disease/genetics , Deoxyribonuclease I/metabolism , Electrocardiography , Fetal Development , Fetus/metabolism , Gene Regulatory Networks , Genome, Human , Genome-Wide Association Study , Humans , Multiple Sclerosis/genetics , Phenotype , Promoter Regions, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics
6.
Genome Biol ; 12(5): R43, 2011.
Article in English | MEDLINE | ID: mdl-21569360

ABSTRACT

BACKGROUND: The development of complex organisms is believed to involve progressive restrictions in cellular fate. Understanding the scope and features of chromatin dynamics during embryogenesis, and identifying regulatory elements important for directing developmental processes remain key goals of developmental biology. RESULTS: We used in vivo DNaseI sensitivity to map the locations of regulatory elements, and explore the changing chromatin landscape during the first 11 hours of Drosophila embryonic development. We identified thousands of conserved, developmentally dynamic, distal DNaseI hypersensitive sites associated with spatial and temporal expression patterning of linked genes and with large regions of chromatin plasticity. We observed a nearly uniform balance between developmentally up- and down-regulated DNaseI hypersensitive sites. Analysis of promoter chromatin architecture revealed a novel role for classical core promoter sequence elements in directing temporally regulated chromatin remodeling. Another unexpected feature of the chromatin landscape was the presence of localized accessibility over many protein-coding regions, subsets of which were developmentally regulated or associated with the transcription of genes with prominent maternal RNA contributions in the blastoderm. CONCLUSIONS: Our results provide a global view of the rich and dynamic chromatin landscape of early animal development, as well as novel insights into the organization of developmentally regulated chromatin features.


Subject(s)
Chromatin/genetics , Deoxyribonuclease I/metabolism , Developmental Biology , Drosophila melanogaster/genetics , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Genome, Insect , Animals , Blastoderm/embryology , Blastoderm/metabolism , Body Patterning/genetics , Chromatin/chemistry , Chromatin Immunoprecipitation , Deoxyribonuclease I/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Female , Genetic Loci , Genomics , Promoter Regions, Genetic , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Regul Toxicol Pharmacol ; 47(1): 48-58, 2007 Feb.
Article in English | MEDLINE | ID: mdl-16971028

ABSTRACT

Recombinant human thrombin (rhThrombin) is being developed as an alternative to thrombin products purified from pooled human or bovine plasma, which are currently marketed for topical hemostasis. Preclinical studies of rhThrombin were conducted prior to its evaluation as a topical adjunct to surgical hemostasis in clinical trials. No overt clinical pathology or signs were observed in cynomolgus monkeys following implantation of a gelatin sponge containing either rhThrombin or bovine thrombin to a surgical liver wound, and similar gross and microscopic wound healing characteristics were observed over an eight-week recovery period with either compound. Repeated subcutaneous injections of rhThrombin or bovine thrombin to cynomolgus monkeys produced no treatment-related effects. Whereas no monkeys demonstrated anti-rhThrombin antibody seroconversion, specific anti-bovine antibodies were detected in all tested monkeys exposed to bovine thrombin. Addition of rhThrombin or bovine thrombin to mouse fibroblast cells resulted in expected detachment and shape change. Topical application of rhThrombin to rabbits did not cause irritation to the eye, normal skin, or abraded skin. These studies showed that topical, subcutaneous, or implanted rhThrombin was minimally immunogenic, safe, and well tolerated in nonclinical models, and supported the clinical evaluation of rhThrombin in a variety of surgical settings.


Subject(s)
Blood Coagulation/drug effects , Hemostatics/toxicity , Recombinant Proteins/toxicity , Thrombin/toxicity , Administration, Topical , Animals , Cattle , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Eye/drug effects , Eye/pathology , Female , Fibroblasts/drug effects , Fibroblasts/pathology , Hemostatics/immunology , Humans , Injections, Subcutaneous , Macaca fascicularis , Male , Mice , Rabbits , Recombinant Proteins/immunology , Skin Irritancy Tests , Thrombin/immunology , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL