Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Small ; 19(26): e2206438, 2023 06.
Article in English | MEDLINE | ID: mdl-36960479

ABSTRACT

DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.


Subject(s)
Metal Nanoparticles , Nanostructures , Palladium , Metal Nanoparticles/chemistry , Nanostructures/chemistry , DNA/chemistry , Gold/chemistry
2.
Chemistry ; 29(9): e202202720, 2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36581496

ABSTRACT

Within this perspective article, we intend to summarise definitions and terms that are often used in the context of open science and data-driven R&D and we discuss upcoming European regulations concerning data, data sharing and handling. With this background in hand, we take a closer look at the potential connections and permeable interfaces of open science and digital economy, in which data and resulting immaterial goods can become vital pieces as tradeable items. We believe that both science and the digital economy can profit from a seamless transition and foresee that the scientific outcomes of publicly funded research can be better exploited. To close the gap between open science and the digital economy, and to serve for a balancing of the interests of data producers, data consumers, and an economy around services and the public, we introduce the concept of generic research data management plans (RDMs), which have in part been developed through a community effort and which have been evaluated by academic and industry members of the NFDI4Cat consortium. We are of the opinion that in data-driven research, RDMs do need to become a vital element in publicly funded projects.

3.
Angew Chem Int Ed Engl ; 60(40): 21772-21777, 2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34339595

ABSTRACT

Understanding catalyst deactivation by coking is crucial for knowledge-based catalyst and process design in reactions with carbonaceous species. Post-mortem analysis of catalyst coking is often performed by bulk characterization methods. Here, hard X-ray ptychographic computed tomography (PXCT) was used to study Ni/Al2 O3 catalysts for CO2 methanation and CH4 dry reforming after artificial coking treatment. PXCT generated quantitative 3D maps of local electron density at ca. 80 nm resolution, allowing to visualize and evaluate the severity of coking in entire catalyst particles of ca. 40 µm diameter. Coking was primarily revealed in the nanoporous solid, which was not detectable in resolved macropores. Coke formation was independently confirmed by operando Raman spectroscopy. PXCT is highlighted as an emerging characterization tool for nanoscale identification, co-localization, and potentially quantification of deactivation phenomena in 3D space within entire catalyst particles.

4.
Molecules ; 23(4)2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29641508

ABSTRACT

In this study, two zeolitic imidazolate frameworks (ZIFs) called ZIF-4 and ZIF-zni (zni is the network topology) were characterized by sorption studies regarding their paraffin/olefin separation potential. In particular, equilibrated pure and mixed gas adsorption isotherms of ethane and ethene were recorded at 293 K up to 3 MPa. ZIF-4 exhibits selectivities for ethane in the range of 1.5-3, which is promising for continuous pressure swing adsorption (PSA). ZIF-4 shows high cycle stability with promising separation potential regarding ethane, which results in purification of the more industrial desired olefin. Furthermore, both ZIF materials were implemented in Matrimid to prepare a mixed matrix membrane (MMM) and were used in the continuous separation of a propane/propene mixture. The separation performance of the neat polymer is drastically increased after embedding porous ZIF-4 crystals in the Matrimid matrix, especially at higher feed pressures (3-5 barg). Due to the smaller kinetic diameter of the olefin, the permeability is higher compared to the paraffin.


Subject(s)
Alkenes/isolation & purification , Imidazoles/chemistry , Paraffin/chemistry , Zeolites/chemistry , Adsorption , Ethane/chemistry , Membranes, Artificial , Models, Molecular , Porosity
5.
Chemphyschem ; 18(12): 1513-1516, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28257156

ABSTRACT

129 Xe NMR spectroscopy is applied under in situ and in operando conditions to study the mixing process in a multicomponent liquid mixture with partially miscible components. The process of mixing of an oil-methanol mixture was triggered by an industrially relevant catalytic transesterification reaction to form fatty acid methyl esters and glycerol. Up to date, kinetic limitations in liquid-phase reactions originating from the poor miscibility of the reacting species have been addressed solely under ex situ conditions, typically by chromatography. In the approach presented here, xenon gas, solvated in the reacting species, acts as a sensor, providing information on the progress of mixing and on the composition during the course of the catalytic reaction. We believe that this study offers a new tool to the set of established techniques for addressing mixing and/or separation processes in liquids, including but not limited to the ones resulting from catalytic reactions.

6.
Inorg Chem ; 55(6): 3030-9, 2016 Mar 21.
Article in English | MEDLINE | ID: mdl-26950305

ABSTRACT

Syntheses and comprehensive characterization of two closely related series of isomorphous metal-organic frameworks (MOFs) based on triazolyl isophthalate linkers with the general formula ∞(3)[M2(R(1)-R(2)-trz-ia)2] (M = Cu, Zn) are presented. Using solvothermal synthesis and synthesis of microcrystalline materials on the gram scale by refluxing a solution of the starting materials, 11 MOFs are readily available for a systematic investigation of structure-property relationships. The networks of the two series are assigned to rutile (rtl) (1-4) and α-PbO2 (apo) (5-9) topology, respectively. Due to the orientation of the triazole substituents toward the cavities, both the pore volume and the pore diameter can be adjusted by choice of the alkyl substituents. Compounds 1-9 exhibit pronounced microporosity with calculated porosities of 31-53% and show thermal stability up to 390 °C as confirmed by simultaneous thermal analysis. Systematic investigation of adsorption properties by CO2 (298 K) and N2 (77 K) adsorption studies reveal remarkable network flexibility induced by alkyl substituents on the linker. Fine-tuning of the gate opening pressure and of the hysteresis shape is possible by adjusting the substitution pattern and by choice of the metal ion.

7.
Nature ; 528(7581): 197-8, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26659178
8.
Angew Chem Int Ed Engl ; 54(17): 5060-4, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25720828

ABSTRACT

Microimaging by IR microscopy is applied to the recording of the evolution of the concentration profiles of reactant and product molecules during catalytic reaction, notably during the hydrogenation of benzene to cyclohexane by nickel dispersed within a nanoporous glass. Being defined as the ratio between the reaction rate in the presence of and without diffusion limitation, the effectiveness factors of catalytic reactions were previously determined by deliberately varying the extent of transport limitation by changing a suitably chosen system parameter, such as the particle size and by comparison of the respective reaction rates. With the novel options of microimaging, effectiveness factors become accessible in a single measurement by simply monitoring the distribution of the reactant molecules over the catalyst particles.

9.
Inorg Chem ; 53(14): 7599-607, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-24967844

ABSTRACT

An isostructural series of 15 structurally flexible microporous silver metal-organic frameworks (MOFs) is presented. The compounds with a dinuclear silver core as secondary building unit (Ag2N4) can be obtained under solvothermal conditions from substituted triazolyl benzoate linkers and AgNO3 or Ag2SO4; they exhibit 2-fold network interpenetration with lvt topology. Besides the crystal structures, the calculated pore size distributions of the microporous MOFs are reported. Simultaneous thermal analyses confirm the stability of the compounds up to 250 °C. Interconnected pores result in a three-dimensional pore structure. Although the porosity of the novel coordination polymers is in the range of only 20-36%, this series can be regarded as a model system for investigation of network flexibility, since the pore diameters and volumes can be gradually adjusted by the substituents of the 3-(1,2,4-triazol-4-yl)-5-benzamidobenzoates. The pore volumes of selected materials are experimentally determined by nitrogen adsorption at 77 K and carbon dioxide adsorption at room temperature. On the basis of the flexible behavior of the linkers a reversible framework transformation of the 2-fold interpenetrated network is observed. The resulting adsorption isotherms with one or two hysteresis loops are interpreted by a gate-opening process. Due to external stimuli, namely, the adsorptive pressure, the materials undergo a phase transition confirming the structural flexibility of the porous coordination polymer.

10.
ACS Catal ; 14(8): 5550-5559, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38660609

ABSTRACT

Chiral phosphoric acids (CPAs) are among the most frequently used organocatalysts, with an ever-increasing number of applications. However, these catalysts are only obtained in a multistep synthesis and are poorly recyclable, which significantly deteriorates their environmental and economic performance. We herein report a conceptually different, general strategy for the direct immobilization of CPAs on a broad scope of solid supports including silica, polystyrene, and aluminum oxide. Solid-state catalysts were obtained in high yields and thoroughly characterized with elemental analysis by inductively coupled plasma-optical emission spectrometry (ICP-OES), nitrogen sorption measurements, thermogravimetric analysis, scanning transmission electron microscopy/energy-dispersive X-ray spectroscopy (STEM/EDX) images, and solid-state NMR spectroscopy. Further, the immobilized catalysts were applied to a variety of synthetically valuable, highly stereoselective transformations under batch and flow conditions including transfer hydrogenations, a Friedländer condensation/transfer hydrogenation sequence, and Mannich reactions under cryogenic flow conditions. Generally, high yields and stereoselectivities were observed along with robust catalyst stability and reusability. After being used for 10 runs under batch conditions, no loss of selectivity or catalytic activity was observed. Under continuous-flow conditions, the heterogeneous system was in operation for 19 h and the high enantioselectivity remained unchanged throughout the entire process. We expect our approach to extend the applicability of CPAs to a higher level, with a focus on flow chemistry and a more environmentally friendly and resource-efficient use of these powerful catalysts.

11.
Nanomaterials (Basel) ; 14(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38334513

ABSTRACT

Single gas sorption experiments with the C4-hydrocarbons n-butane, iso-butane, 1-butene and iso-butene on the flexible MOFs Cu-IHMe-pw and Cu-IHEt-pw were carried out with both thermodynamic equilibrium and overall sorption kinetics. Subsequent static binary gas mixture experiments of n-butane and iso-butane unveil a complex dependence of the overall selectivity on sorption enthalpy, rate of structural transition as well as steric effects. A thermodynamic separation favoring iso-butane as well as kinetic separation favoring n-butane are possible within Cu-IHMe-pw while complete size exclusion of iso-butane is achieved in Cu-IHEt-pw. This proof-of-concept study shows that the structural flexibility offers additional levers for the precise modulation of the separation mechanisms for complex mixtures with similar chemical and physical properties with real selectivities of >10.

12.
Inorg Chem ; 52(15): 8738-42, 2013 Aug 05.
Article in English | MEDLINE | ID: mdl-23865443

ABSTRACT

A series of isostructural 3D coordination polymers (3)∞[M(tdc)(bpy)] (M(2+) = Zn(2+), Cd(2+), Co(2+), Fe(2+); tdc(2-) = 2,5-thiophenedicarboxylate; bpy = 4,4'-bipyridine) was synthesized and characterized by X-ray diffraction, thermal analysis, and gas adsorption measurements. The materials show high thermal stability up to approximately 400 °C and a solvent induced phase transition. Single crystal X-ray structure determination was successfully performed for all compounds after the phase transition. In the zinc-based coordination polymer, various amounts of a second type of metal ions such as Co(2+) or Fe(2+) could be incorporated. Furthermore, the catalytic behavior of the homo- and heteronuclear 3D coordination polymers in an oxidation model reaction was investigated.

13.
Anal Chim Acta ; 1267: 341323, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37257962

ABSTRACT

BACKGROUND: Hydrophilic interaction chromatography (HILIC) works with organic solvent-water mixtures as eluent and is based on the formation of a water enriched liquid phase on the surface of a hydrophilic stationary phase. Hydrophilic solutes are retained on that stagnant water-rich film depending on the difference of solvation compared to the mobile phase composition. However, the enhancement of selectivity by increasing the fraction of organic cosolvent is coupled with a limitation the analyte solubility, and the improvement of the HILIC principle by new hydrophilic stationary phases is the remaining option. RESULTS: Y-zeolite (faujasite, FAU type) in the Na+-form with an average particle diameter of 5 µm was used as packing material in a 125 mm long HPLC column. The chromatographic response of the column was tested in methanol-water mixtures as eluent after injection of several aliphatic alcohols, polyols and monosaccharides with eluent conditions where no separation occurs on diol functionalized silica. On the zeolite the retention time increases according to ethylene glycol < glycerol < erythritol < sorbitol < inositol. The separation principle is explained to be superposed by two effects: firstly, a partition equilibrium between the water-rich phase in the zeolite micropores exists, and secondly, selective interactions with the inner crystalline pore surface and fixed-position Na+ ions, both serving to enhance the selectivity. Furthermore, arabinose and fructose monosaccharides could be separated into their tautomeric forms. Only upon increasing the temperature from 20 to 60 °C the tautomeric pattern merges into a single peak. SIGNIFICANCE AND NOVELTY: Instead of the stagnant water rich surface layer, zeolite micropores now take over that function. As a result, the selectivity among polyols and between α/ß-arabinopyranose and ß-fructopyranose/ß-fructofuranose tautomers is extraordinary superior towards conventional hydrophilic interaction liquid chromatography (HILIC).

14.
RSC Adv ; 13(47): 32928-32938, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38025853

ABSTRACT

The existence of endocrine disrupting chemicals (EDCs) in water and wastewater gives rise to significant environmental concerns. Conventional treatment approaches demonstrate limited capacity for EDC removal. Thus, incorporation of advanced separation procedures becomes essential to enhance the efficiency of EDC removal. In this work, adsorber composite microfiltration polyethersulfone membranes embedded with divinyl benzene polymer particles were created. These membranes were designed for effectively removing a variety of EDCs from water. The adsorber particles were synthesized using precipitation polymerization. Subsequently, they were integrated into the membrane scaffold through a phase inversion process. The technique of electron beam irradiation was applied for the covalent immobilization of particles within the membrane scaffold. Standard characterization procedures were carried out (i.e., water permeance, contact angle, X-ray photoelectron spectroscopy and scanning electron microscopy) to gain a deep understanding of the synthesized membrane properties. Dynamic adsorption experiments demonstrated the excellent capability of the synthesized composite membranes to effectively remove EDCs from water. Particularly, among the various target molecules examined, testosterone stands out with the most remarkable enhancement, presenting an adsorption loading of 220 mg m-2. This is an impressive 26-fold increase in the adsorption when compared to the performance of the pristine membrane. Similarly, androst-4-ene-3,17-dione exhibited an 18-fold improvement in adsorption capacity in comparison to the pristine membrane. The composite membranes also exhibited significant adsorption capacities for other key compounds, including 17ß-estradiol, equilin, and bisphenol-A. With the implementation of an effective regeneration procedure, the composite membranes were put to use for adsorption over three consecutive cycles without any decline in their adsorption capacity.

15.
Nanomaterials (Basel) ; 13(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36770562

ABSTRACT

The rate of sorption of n-butane on the structurally flexible metal-organic framework [Cu2(H-Me-trz-ia)2], including its complete structural transition between a narrow-pore phase and a large-pore phase, was studied by sorption gravimetry, IR spectroscopy, and powder X-ray diffraction at close to ambient temperature (283, 298, and 313 K). The uptake curves reveal complex interactions of adsorption on the outer surface of MOF particles, structural transition, of which the overall rate depends on several factors, including pressure step, temperature, as well as particle size, and the subsequent diffusion into newly opened pores. With the aid of a kinetic model based on the linear driving force (LDF) approach, both rates of diffusion and structural transition were studied independently of each other. It is shown that temperature and applied pressure steps have a strong effect on the rate of structural transition and thus, the overall velocity of gas uptake. For pressure steps close to the upper boundary of the gate-opening, the rate of structural transition is drastically reduced. This feature enables a fine-tuning of the overall velocity of sorption, which can even turn into anti-Arrhenius behavior.

16.
ACS Omega ; 8(44): 41107-41119, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37970047

ABSTRACT

A series of ZSM-5 zeolite materials were synthesized from organic structure-directing agent (OSDA)-free seeded systems, including nanosized silicalite-1 (12 wt % water suspension or in powder form) or nanosized ZSM-5 (powder form of ZSM-5 prepared at 100 or 170 °C). The physicochemical characterization revealed aggregated species in the samples based on silicalite-1. Contrarily, the catalysts based on ZSM-5 seeds revealed isolated copper species, and thus, higher NO conversion during the selective catalytic reduction of NOx with NH3 (NH3-SCR-DeNOx) was observed. Furthermore, a comparison of the Cu-containing ZSM-5 catalysts, conventionally prepared in the presence of OSDAs and prepared with an environmentally more benign approach (without OSDAs), revealed their comparable activity in NH3-SCR-DeNOx.

17.
Membranes (Basel) ; 12(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35736306

ABSTRACT

Biocatalytic membrane reactors combine the highly efficient biotransformation capability of enzymes with the selective filtration performance of membrane filters. Common strategies to immobilize enzymes on polymeric membranes are based on chemical coupling reactions. Still, they are associated with drawbacks such as long reaction times, high costs, and the use of potentially toxic or hazardous reagents. In this study, a reagent-free immobilization method based on electron beam irradiation was investigated, which allows much faster, cleaner, and cheaper fabrication of enzyme membrane reactors. Two industrial lipase enzymes were coupled onto a polyvinylidene fluoride (PVDF) flat sheet membrane to create self-cleaning surfaces. The response surface methodology (RSM) in the design-of-experiments approach was applied to investigate the effects of three numerical factors on enzyme activity, yielding a maximum activity of 823 ± 118 U m-2 (enzyme concentration: 8.4 g L-1, impregnation time: 5 min, irradiation dose: 80 kGy). The lipolytic membranes were used in fouling tests with olive oil (1 g L-1 in 2 mM sodium dodecyl sulfate), resulting in 100% regeneration of filtration performance after 3 h of self-cleaning in an aqueous buffer (pH 8, 37 °C). Reusability with three consecutive cycles demonstrates regeneration of 95%. Comprehensive membrane characterization was performed by determining enzyme kinetic parameters, permeance monitoring, X-ray photoelectron spectroscopy, FTIR spectroscopy, scanning electron microscopy, and zeta potential, as well as water contact angle measurements.

18.
RSC Adv ; 12(26): 16875-16885, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35754876

ABSTRACT

Thermally stable, highly mesoporous Si-stabilized ZrO2 was prepared by sol-gel-synthesis. By utilizing the surfactant dodecylamine (DDA), large mesopores with a pore width of ∼9.4 nm are formed. Combined with an NH3-treatment on the hydrogel, a high specific surface area of up to 225 m2 g-1 and pore volume up to 0.46 cm3 g-1 are obtained after calcination at 973 K. The individual contributions of Si-addition, DDA surfactant and the NH3-treatment on the resulting pore system were studied by inductively coupled plasma with optical emission spectrometry (ICP-OES), X-ray diffraction (XRD), N2 sorption, and transmission electron microscopy (TEM). Electron tomography was applied to visualize and investigate the mesopore network in 3D space. While Si prevents the growth of ZrO2 crystallites and stabilizes the t-ZrO2 phase, DDA generates a homogeneous mesopore network within the zirconia. The NH3-treatment unblocks inaccessible pores, thereby increasing specific surface area and pore volume while retaining the pore width distribution.

19.
RSC Adv ; 12(40): 26382, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36275089

ABSTRACT

[This corrects the article DOI: 10.1039/D2RA01459A.].

20.
Nanomaterials (Basel) ; 12(14)2022 Jul 14.
Article in English | MEDLINE | ID: mdl-35889636

ABSTRACT

The analysis of empirical sorption equilibrium datasets is still vital to gain insights into material-property relationships as computational methods remain in development, especially for complex materials such as flexible MOFs. Therefore, the Dubinin-based universal adsorption theory (D-UAT) was revisited and evaluated as a simple visualization, analysis, and prediction tool for sorption equilibrium data. Within the theory, gas properties are normalized into corresponding states using the critical temperatures of the respective sorptives. The study shows theoretically and experimentally that the D-UAT is able to condense differences of sorption data visualized in reduced Dubinin plots to just three governing parameters: (a) the accessible pore volume, (b) the reduced enthalpy of sorption, and (c) the framework's reduced free energy differences (in case of flexible behavior). This makes the theory a fast visualization and analysis tool, the use as a prediction tool depends on rough assumptions, and thus is not recommended.

SELECTION OF CITATIONS
SEARCH DETAIL