Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Transgenic Res ; 31(6): 607-623, 2022 12.
Article in English | MEDLINE | ID: mdl-36194213

ABSTRACT

Novel genetically modified biological control products (referred to as "GM biocontrol products") are being considered to address a range of complex problems in public health, conservation, and agriculture, including preventing the transmission of vector-borne parasitic and viral diseases as well as the spread of invasive plant and animal species. These interventions involve release of genetically modified organisms (GMOs) into the environment, sometimes with intentional dissemination of the modification within the local population of the targeted species, which presents new challenges and opportunities for regulatory review and decision-making. Practices developed for GMOs, primarily applied to date for GM crops may need to be adapted to accommodate different types of organisms, such as insects, and different technologies, such as gene drive. Developers of new GM biocontrol products would benefit from an early understanding of safety data and information that are likely to be required within the regulatory dossier for regulatory evaluation and decision making. Here a generalizable tool drawing from existing GM crop dossier requirements, forms, and relevant experience is proposed to assist researchers and developers organize and plan their research and trialing. This tool requires considering specifics of each investigational product, their intended use, and country specific requirements at various phases of potential product development, from laboratory research through contained field testing and experimental release into the environment. This may also be helpful to risk assessors and regulators in supporting their systematic and rigorous evaluation of new biocontrol products.


Subject(s)
Containment of Biohazards , Crops, Agricultural , Animals , Plants, Genetically Modified/genetics , Crops, Agricultural/genetics , Agriculture , Research , Risk Assessment
2.
Appl Environ Microbiol ; 69(6): 3110-8, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788705

ABSTRACT

To investigate the impact of genetically modified, antibiotic-producing rhizobacteria on the indigenous microbial community, Pseudomonas putida WCS358r and two transgenic derivatives were introduced as a seed coating into the rhizosphere of wheat in two consecutive years (1999 and 2000) in the same field plots. The two genetically modified microorganisms (GMMs), WCS358r::phz and WCS358r::phl, constitutively produced phenazine-1-carboxylic acid (PCA) and 2,4-diacetylphloroglucinol (DAPG), respectively. The level of introduced bacteria in all treatments decreased from 10(7) CFU per g of roots soon after sowing to less than 10(2) CFU per g after harvest 132 days after sowing. The phz and phl genes remained stable in the chromosome of WCS358r. The amount of PCA produced in the wheat rhizosphere by WCS358r::phz was about 40 ng/g of roots after the first application in 1999. The DAPG-producing GMMs caused a transient shift in the indigenous bacterial and fungal microflora in 1999, as determined by amplified ribosomal DNA restriction analysis. However, after the second application of the GMMs in 2000, no shifts in the bacterial or fungal microflora were detected. To evaluate the importance of the effects induced by the GMMs, these effects were compared with those induced by crop rotation by planting wheat in 1999 followed by potatoes in 2000. No effect of rotation on the microbial community structure was detected. In 2000 all bacteria had a positive effect on plant growth, supposedly due to suppression of deleterious microorganisms. Our research suggests that the natural variability of microbial communities can surpass the effects of GMMs.


Subject(s)
Ecosystem , Organisms, Genetically Modified , Plant Roots/microbiology , Pseudomonas putida/growth & development , Soil Microbiology , Triticum/microbiology , Crops, Agricultural/growth & development , Pest Control, Biological , Pseudomonas putida/genetics , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL