Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(12): 3281-3298.e22, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34019796

ABSTRACT

Organs are composed of diverse cell types that traverse transient states during organogenesis. To interrogate this diversity during human development, we generate a single-cell transcriptome atlas from multiple developing endodermal organs of the respiratory and gastrointestinal tract. We illuminate cell states, transcription factors, and organ-specific epithelial stem cell and mesenchyme interactions across lineages. We implement the atlas as a high-dimensional search space to benchmark human pluripotent stem cell (hPSC)-derived intestinal organoids (HIOs) under multiple culture conditions. We show that HIOs recapitulate reference cell states and use HIOs to reconstruct the molecular dynamics of intestinal epithelium and mesenchyme emergence. We show that the mesenchyme-derived niche cue NRG1 enhances intestinal stem cell maturation in vitro and that the homeobox transcription factor CDX2 is required for regionalization of intestinal epithelium and mesenchyme in humans. This work combines cell atlases and organoid technologies to understand how human organ development is orchestrated.


Subject(s)
Anatomy, Artistic , Atlases as Topic , Embryonic Development , Endoderm/embryology , Models, Biological , Organoids/embryology , CDX2 Transcription Factor/metabolism , Cell Line , Epidermal Growth Factor/pharmacology , Epithelial Cells/cytology , Female , Gastrulation , Gene Deletion , Gene Expression Regulation, Developmental/drug effects , Humans , Intestines/embryology , Male , Mesoderm/embryology , Middle Aged , Neuregulin-1/metabolism , Organ Specificity , Pluripotent Stem Cells/cytology
2.
Immunity ; 56(9): 2152-2171.e13, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37582369

ABSTRACT

Microglia phenotypes are highly regulated by the brain environment, but the transcriptional networks that specify the maturation of human microglia are poorly understood. Here, we characterized stage-specific transcriptomes and epigenetic landscapes of fetal and postnatal human microglia and acquired corresponding data in induced pluripotent stem cell (iPSC)-derived microglia, in cerebral organoids, and following engraftment into humanized mice. Parallel development of computational approaches that considered transcription factor (TF) co-occurrence and enhancer activity allowed prediction of shared and state-specific gene regulatory networks associated with fetal and postnatal microglia. Additionally, many features of the human fetal-to-postnatal transition were recapitulated in a time-dependent manner following the engraftment of iPSC cells into humanized mice. These data and accompanying computational approaches will facilitate further efforts to elucidate mechanisms by which human microglia acquire stage- and disease-specific phenotypes.


Subject(s)
Induced Pluripotent Stem Cells , Microglia , Humans , Mice , Animals , Gene Regulatory Networks , Brain , Gene Expression Regulation
3.
Nature ; 609(7929): 1012-1020, 2022 09.
Article in English | MEDLINE | ID: mdl-36131015

ABSTRACT

Medulloblastoma, a malignant childhood cerebellar tumour, segregates molecularly into biologically distinct subgroups, suggesting that a personalized approach to therapy would be beneficial1. Mouse modelling and cross-species genomics have provided increasing evidence of discrete, subgroup-specific developmental origins2. However, the anatomical and cellular complexity of developing human tissues3-particularly within the rhombic lip germinal zone, which produces all glutamatergic neuronal lineages before internalization into the cerebellar nodulus-makes it difficult to validate previous inferences that were derived from studies in mice. Here we use multi-omics to resolve the origins of medulloblastoma subgroups in the developing human cerebellum. Molecular signatures encoded within a human rhombic-lip-derived lineage trajectory aligned with photoreceptor and unipolar brush cell expression profiles that are maintained in group 3 and group 4 medulloblastoma, suggesting a convergent basis. A systematic diagnostic-imaging review of a prospective institutional cohort localized the putative anatomical origins of group 3 and group 4 tumours to the nodulus. Our results connect the molecular and phenotypic features of clinically challenging medulloblastoma subgroups to their unified beginnings in the rhombic lip in the early stages of human development.


Subject(s)
Cell Lineage , Cerebellar Neoplasms , Medulloblastoma , Metencephalon , Animals , Cerebellar Neoplasms/classification , Cerebellar Neoplasms/embryology , Cerebellar Neoplasms/pathology , Cerebellum/embryology , Humans , Medulloblastoma/classification , Medulloblastoma/embryology , Medulloblastoma/pathology , Metencephalon/embryology , Mice , Neurons/pathology , Prospective Studies
4.
Brain ; 147(2): 427-443, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37671615

ABSTRACT

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Subject(s)
Lewy Body Disease , Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/metabolism , c-Mer Tyrosine Kinase/metabolism , Lewy Body Disease/metabolism , Microglia/metabolism , Parkinson Disease/metabolism , Protein-Tyrosine Kinases , Synucleinopathies/metabolism
5.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417889

ABSTRACT

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomics/methods , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation/genetics , Phenotype
6.
Pediatr Cardiol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480572

ABSTRACT

In many congenital heart defects, it can be difficult to ascertain primary pathology from secondary consequences from altered flow through the developing heart. The molecular differences between the growing right and left ventricles (RV and LV, respectively) following the completion of septation and the impact of sex on these mechanisms have not been investigated. We analyzed RNA-seq data derived from twelve RV and LVs, one with Hypoplastic Left Heart Syndrome (HLHS), to compare the transcriptomic landscape between the ventricles during development. Differential gene expression analysis revealed a large proportion of genes unique to either the RV or LV as well as sex bias. Our GO enrichment and network analysis strategy highlighted the differential role of immune functions between the RV and LV in the developing heart. Comparatively, RNA-seq analysis of data from C57Bl6/J mice hearts collected at E14 resulted in the enrichment of similar processes related to T cells and leukocyte migration and activation. Differential gene expression analysis of an HLHS case highlighted significant downregulation of chromatin organization pathways and upregulation of genes involved in muscle organ development. This analysis also identified previously unreported upregulation of genes involved in IL-17 production pathways. In conclusion, differences exist between the gene expression profiles of RV versus LV with the expression of immune-related genes being significantly different between these two chambers. The pathogenesis of HLHS may involve alterations in the expression of chromatin and muscle gene organization as well as upregulation of the IL-17 response pathway.

7.
Am J Hum Genet ; 105(3): 606-615, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31474318

ABSTRACT

Cerebellar malformations are diverse congenital anomalies frequently associated with developmental disability. Although genetic and prenatal non-genetic causes have been described, no systematic analysis has been performed. Here, we present a large-exome sequencing study of Dandy-Walker malformation (DWM) and cerebellar hypoplasia (CBLH). We performed exome sequencing in 282 individuals from 100 families with DWM or CBLH, and we established a molecular diagnosis in 36 of 100 families, with a significantly higher yield for CBLH (51%) than for DWM (16%). The 41 variants impact 27 neurodevelopmental-disorder-associated genes, thus demonstrating that CBLH and DWM are often features of monogenic neurodevelopmental disorders. Though only seven monogenic causes (19%) were identified in more than one individual, neuroimaging review of 131 additional individuals confirmed cerebellar abnormalities in 23 of 27 genetic disorders (85%). Prenatal risk factors were frequently found among individuals without a genetic diagnosis (30 of 64 individuals [47%]). Single-cell RNA sequencing of prenatal human cerebellar tissue revealed gene enrichment in neuronal and vascular cell types; this suggests that defective vasculogenesis may disrupt cerebellar development. Further, de novo gain-of-function variants in PDGFRB, a tyrosine kinase receptor essential for vascular progenitor signaling, were associated with CBLH, and this discovery links genetic and non-genetic etiologies. Our results suggest that genetic defects impact specific cerebellar cell types and implicate abnormal vascular development as a mechanism for cerebellar malformations. We also confirmed a major contribution for non-genetic prenatal factors in individuals with cerebellar abnormalities, substantially influencing diagnostic evaluation and counseling regarding recurrence risk and prognosis.


Subject(s)
Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Cohort Studies , Female , Humans , Male , Pregnancy
8.
Am J Med Genet A ; 188(8): 2443-2447, 2022 08.
Article in English | MEDLINE | ID: mdl-35679177

ABSTRACT

We report a neonate with severe Marfan syndrome (MS), prenatally identified to have persistent atrial tachycardia, biventricular dysfunction, and an unusual structure within the atria. Detailed postnatal echocardiographic evaluation and cross-sectional imaging confirmed congenital pseudoaneurysm of the mitral-aortic intervalvular fibrosa. Emergent testing by next-generation sequencing identified a FBN1 pathological variant, key to establishing goals of care. To our knowledge, this is the first reported case of a congenital pseudoaneurysm of the mitral-aortic intervalvular fibrosa in MS.


Subject(s)
Aneurysm, False , Marfan Syndrome , Aneurysm, False/pathology , Aortic Valve/pathology , Echocardiography , Humans , Infant, Newborn , Marfan Syndrome/complications , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Mitral Valve/diagnostic imaging , Mitral Valve/pathology
9.
Am J Hum Genet ; 102(6): 1143-1157, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29805042

ABSTRACT

Non-syndromic cleft lip with or without cleft palate (NS-CL/P) is one of the most common human birth defects and is generally considered a complex trait. Despite numerous loci identified by genome-wide association studies, the effect sizes of common variants are relatively small, with much of the presumed genetic contribution remaining elusive. We report exome-sequencing results in 209 people from 72 multi-affected families with pedigree structures consistent with autosomal-dominant inheritance and variable penetrance. Herein, pathogenic variants are described in four genes encoding components of the p120-catenin complex (CTNND1, PLEKHA7, PLEKHA5) and an epithelial splicing regulator (ESRP2), in addition to the known CL/P-associated gene, CDH1, which encodes E-cadherin. The findings were also validated in a second cohort of 497 people with NS-CL/P, comprising small families and singletons with pathogenic variants in these genes identified in 14% of multi-affected families and 2% of the replication cohort of smaller families. Enriched expression of each gene/protein in human and mouse embryonic oro-palatal epithelia, demonstration of functional impact of CTNND1 and ESRP2 variants, and recapitulation of the CL/P spectrum in Ctnnd1 knockout mice support a causative role in CL/P pathogenesis. These data show that primary defects in regulators of epithelial cell adhesion are the most significant contributors to NS-CL/P identified to date and that inherited and de novo single gene variants explain a substantial proportion of NS-CL/P.


Subject(s)
Cadherins/genetics , Catenins/genetics , Cleft Lip/genetics , Cleft Palate/genetics , Genetic Predisposition to Disease , Mutation/genetics , Alleles , Amino Acid Sequence , Animals , Biotinylation , Epithelium/metabolism , Epithelium/pathology , Female , Gene Deletion , Humans , Infant , Infant, Newborn , Male , Mice , Palate/pathology , Pedigree , Syndrome , Exome Sequencing , Delta Catenin
10.
Acta Neuropathol ; 142(4): 761-776, 2021 10.
Article in English | MEDLINE | ID: mdl-34347142

ABSTRACT

Dandy-Walker malformation (DWM) and Cerebellar vermis hypoplasia (CVH) are commonly recognized human cerebellar malformations diagnosed following ultrasound and antenatal or postnatal MRI. Specific radiological criteria are used to distinguish them, yet little is known about their differential developmental disease mechanisms. We acquired prenatal cases diagnosed as DWM and CVH and studied cerebellar morphobiometry followed by histological and immunohistochemical analyses. This was supplemented by laser capture microdissection and RNA-sequencing of the cerebellar rhombic lip, a transient progenitor zone, to assess the altered transcriptome of DWM vs control samples. Our radiological findings confirm that the cases studied fall within the accepted biometric range of DWM. Our histopathological analysis points to reduced foliation and inferior vermian hypoplasia as common features in all examined DWM cases. We also find that the rhombic lip, a dorsal stem cell zone that drives the growth and maintenance of the posterior vermis is specifically disrupted in DWM, with reduced proliferation and self-renewal of the progenitor pool, and altered vasculature, all confirmed by transcriptomics analysis. We propose a unified model for the developmental pathogenesis of DWM. We hypothesize that rhombic lip development is disrupted through either aberrant vascularization and/or direct insult which causes reduced proliferation and failed expansion of the rhombic lip progenitor pool leading to disproportionate hypoplasia and dysplasia of the inferior vermis. Timing of insult to the developing rhombic lip (before or after 14 PCW) dictates the extent of hypoplasia and distinguishes DWM from CVH.


Subject(s)
Cerebellum/abnormalities , Dandy-Walker Syndrome/embryology , Dandy-Walker Syndrome/pathology , Fetal Development/physiology , Fetus/pathology , Nervous System Malformations/embryology , Nervous System Malformations/pathology , Case-Control Studies , Cerebellum/embryology , Cerebellum/pathology , Developmental Disabilities/pathology , Humans , Infant, Newborn
11.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Article in English | MEDLINE | ID: mdl-33205886

ABSTRACT

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Subject(s)
Brain/abnormalities , Brain/pathology , Diseases in Twins/pathology , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Adult , Diseases in Twins/genetics , Female , Humans , Infant, Newborn , Male , Pregnancy , Review Literature as Topic
12.
Neuropediatrics ; 52(3): 186-191, 2021 06.
Article in English | MEDLINE | ID: mdl-33445191

ABSTRACT

We describe two novel missense variants in CACNA1A segregating in a family with variable severity of ataxia/oculomotor dysfunction, neurobehavioral impairments, and epilepsy. The most severe outcome occurred in a compound heterozygous proband, which could represent variable expression of the paternal allele or biallelic modulation of calcium channel function. Acetazolamide and lamotrigine were effective for seizure control.


Subject(s)
Cerebellar Ataxia , Epilepsy , Anticonvulsants/therapeutic use , Ataxia , Calcium Channels/genetics , Humans , Mutation, Missense
13.
Hum Mol Genet ; 27(21): 3710-3719, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30085106

ABSTRACT

Mitochondrial dynamics, including mitochondrial division, fusion and transport, are integral parts of mitochondrial and cellular function. DNM1L encodes dynamin-related protein 1 (Drp1), a member of the dynamin-related protein family that is required for mitochondrial division. Several de novo mutations in DNM1L are associated with a range of disease states. Here we report the identification of five patients with pathogenic or likely pathogenic variants of DNM1L, including two novel variants. Interestingly, all of the positions identified in these Drp1 variants are fully conserved among all members of the dynamin-related protein family that are involved in membrane division and organelle division events. This work builds upon and expands the clinical spectrum associated with Drp1 variants in patients and their impact on mitochondrial division in model cells.


Subject(s)
GTP Phosphohydrolases/genetics , Microtubule-Associated Proteins/genetics , Mitochondrial Diseases/enzymology , Mitochondrial Dynamics , Mitochondrial Proteins/genetics , Mutation , Cell Line , Child , DNA Mutational Analysis , Dynamins , Female , GTP Phosphohydrolases/physiology , Humans , Infant , Male , Microtubule-Associated Proteins/physiology , Mitochondrial Diseases/physiopathology , Mitochondrial Proteins/physiology
14.
Am J Hum Genet ; 101(2): 291-299, 2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28777934

ABSTRACT

Progressive childhood encephalopathy is an etiologically heterogeneous condition characterized by progressive central nervous system dysfunction in association with a broad range of morbidity and mortality. The causes of encephalopathy can be either non-genetic or genetic. Identifying the genetic causes and dissecting the underlying mechanisms are critical to understanding brain development and improving treatments. Here, we report that variants in TRAPPC12 result in progressive childhood encephalopathy. Three individuals from two unrelated families have either a homozygous deleterious variant (c.145delG [p.Glu49Argfs∗14]) or compound-heterozygous variants (c.360dupC [p.Glu121Argfs∗7] and c.1880C>T [p. Ala627Val]). The clinical phenotypes of the three individuals are strikingly similar: severe disability, microcephaly, hearing loss, spasticity, and characteristic brain imaging findings. Fibroblasts derived from all three individuals showed a fragmented Golgi that could be rescued by expression of wild-type TRAPPC12. Protein transport from the endoplasmic reticulum to and through the Golgi was delayed. TRAPPC12 is a member of the TRAPP protein complex, which functions in membrane trafficking. Variants in several other genes encoding members of the TRAPP complex have been associated with overlapping clinical presentations, indicating shared and distinct functions for each complex member. Detailed understanding of the TRAPP-opathies will illuminate the role of membrane protein transport in human disease.


Subject(s)
Brain Diseases/genetics , Endoplasmic Reticulum/metabolism , Golgi Apparatus/pathology , Membrane Transport Proteins/genetics , Protein Transport/genetics , Transcription Factors/genetics , Atrophy/pathology , Base Sequence , Brain/pathology , Brain Diseases/pathology , Cells, Cultured , Child, Preschool , Exome/genetics , Female , Genetic Predisposition to Disease , Humans , Infant , Magnetic Resonance Imaging , Male , Protein Transport/physiology , Sequence Analysis, DNA
15.
Am J Med Genet A ; 182(1): 229-249, 2020 01.
Article in English | MEDLINE | ID: mdl-31710777

ABSTRACT

Joubert syndrome (JS) is a recessive neurodevelopmental disorder defined by a characteristic cerebellar and brainstem malformation recognizable on axial brain magnetic resonance imaging as the "Molar Tooth Sign". Although defined by the neurological features, JS is associated with clinical features affecting many other organ systems, particularly progressive involvement of the retina, kidney, and liver. JS is a rare condition; therefore, many affected individuals may not have easy access to subspecialty providers familiar with JS (e.g., geneticists, neurologists, developmental pediatricians, ophthalmologists, nephrologists, hepatologists, psychiatrists, therapists, and educators). Expert recommendations can enable practitioners of all types to provide quality care to individuals with JS and know when to refer for subspecialty care. This need will only increase as precision treatments targeting specific genetic causes of JS emerge. The goal of these recommendations is to provide a resource for general practitioners, subspecialists, and families to maximize the health of individuals with JS throughout the lifespan.


Subject(s)
Abnormalities, Multiple/epidemiology , Cerebellum/abnormalities , Eye Abnormalities/epidemiology , Health Personnel , Kidney Diseases, Cystic/epidemiology , Neurodevelopmental Disorders/epidemiology , Retina/abnormalities , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Abnormalities, Multiple/therapy , Brain Stem/pathology , Cerebellum/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Eye Abnormalities/therapy , Health Planning Guidelines , Humans , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Kidney Diseases, Cystic/therapy , Liver/pathology , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurodevelopmental Disorders/therapy , Retina/pathology
16.
Am J Med Genet A ; 182(9): 2037-2048, 2020 09.
Article in English | MEDLINE | ID: mdl-32710489

ABSTRACT

The SET domain containing 2, histone lysine methyltransferase encoded by SETD2 is a dual-function methyltransferase for histones and microtubules and plays an important role for transcriptional regulation, genomic stability, and cytoskeletal functions. Specifically, SETD2 is associated with trimethylation of histone H3 at lysine 36 (H3K36me3) and methylation of α-tubulin at lysine 40. Heterozygous loss of function and missense variants have previously been described with Luscan-Lumish syndrome (LLS), which is characterized by overgrowth, neurodevelopmental features, and absence of overt congenital anomalies. We have identified 15 individuals with de novo variants in codon 1740 of SETD2 whose features differ from those with LLS. Group 1 consists of 12 individuals with heterozygous variant c.5218C>T p.(Arg1740Trp) and Group 2 consists of 3 individuals with heterozygous variant c.5219G>A p.(Arg1740Gln). The phenotype of Group 1 includes microcephaly, profound intellectual disability, congenital anomalies affecting several organ systems, and similar facial features. Individuals in Group 2 had moderate to severe intellectual disability, low normal head circumference, and absence of additional major congenital anomalies. While LLS is likely due to loss of function of SETD2, the clinical features seen in individuals with variants affecting codon 1740 are more severe suggesting an alternative mechanism, such as gain of function, effects on epigenetic regulation, or posttranslational modification of the cytoskeleton. Our report is a prime example of different mutations in the same gene causing diverging phenotypes and the features observed in Group 1 suggest a new clinically recognizable syndrome uniquely associated with the heterozygous variant c.5218C>T p.(Arg1740Trp) in SETD2.


Subject(s)
Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Tubulin/genetics , Child , Child, Preschool , Codon/genetics , Epigenesis, Genetic/genetics , Female , Genetic Association Studies , Humans , Infant , Intellectual Disability/pathology , Loss of Function Mutation/genetics , Male , Mutation, Missense , Nervous System Malformations/genetics , Nervous System Malformations/pathology , Neurodevelopmental Disorders/physiopathology
17.
Hum Mutat ; 40(10): 1813-1825, 2019 10.
Article in English | MEDLINE | ID: mdl-31215115

ABSTRACT

Cleft lip with or without cleft palate (CL/P) is generally viewed as a complex trait with multiple genetic and environmental contributions. In 70% of cases, CL/P presents as an isolated feature and/or deemed nonsyndromic. In the remaining 30%, CL/P is associated with multisystem phenotypes or clinically recognizable syndromes, many with a monogenic basis. Here we report the identification, via exome sequencing, of likely pathogenic variants in two genes that encode interacting proteins previously only linked to orofacial clefting in mouse models. A variant in GDF11 (encoding growth differentiation factor 11), predicting a p.(Arg298Gln) substitution at the Furin protease cleavage site, was identified in one family that segregated with CL/P and both rib and vertebral hypersegmentation, mirroring that seen in Gdf11 knockout mice. In the second family in which CL/P was the only phenotype, a mutation in FST (encoding the GDF11 antagonist, Follistatin) was identified that is predicted to result in a p.(Cys56Tyr) substitution in the region that binds GDF11. Functional assays demonstrated a significant impact of the specific mutated amino acids on FST and GDF11 function and, together with embryonic expression data, provide strong evidence for the importance of GDF11 and Follistatin in the regulation of human orofacial development.


Subject(s)
Bone Morphogenetic Proteins/genetics , Cleft Lip/diagnosis , Cleft Lip/genetics , Follistatin/metabolism , Genetic Association Studies , Genetic Predisposition to Disease , Growth Differentiation Factors/genetics , Mutation , Alleles , Amino Acid Substitution , Bone Morphogenetic Proteins/antagonists & inhibitors , Cell Line , Computational Biology/methods , Follistatin/chemistry , Genetic Association Studies/methods , Genomics/methods , Growth Differentiation Factors/antagonists & inhibitors , Humans , Models, Molecular , Pedigree , Protein Conformation , Exome Sequencing
19.
Ann Neurol ; 83(6): 1089-1095, 2018 06.
Article in English | MEDLINE | ID: mdl-29518281

ABSTRACT

VPS13 protein family members VPS13A through VPS13C have been associated with various recessive movement disorders. We describe the first disease association of rare recessive VPS13D variants including frameshift, missense, and partial duplication mutations with a novel complex, hyperkinetic neurological disorder. The clinical features include developmental delay, a childhood onset movement disorder (chorea, dystonia, or tremor), and progressive spastic ataxia or paraparesis. Characteristic brain magnetic resonance imaging shows basal ganglia or diffuse white matter T2 hyperintensities as seen in Leigh syndrome and choreoacanthocytosis. Muscle biopsy in 1 case showed mitochondrial aggregates and lipidosis, suggesting mitochondrial dysfunction. These findings underline the importance of the VPS13 complex in neurological diseases and a possible role in mitochondrial function. Ann Neurol 2018;83:1089-1095.


Subject(s)
Intellectual Disability/genetics , Movement Disorders/genetics , Muscle Spasticity/genetics , Mutation/genetics , Optic Atrophy/genetics , Proteins/genetics , Spinocerebellar Ataxias/genetics , Basal Ganglia/pathology , Brain/pathology , Child , Humans , Leigh Disease/pathology , Magnetic Resonance Imaging/methods , Muscle Spasticity/pathology , Pedigree
20.
Am J Med Genet C Semin Med Genet ; 178(3): 374-378, 2018 09.
Article in English | MEDLINE | ID: mdl-30260069

ABSTRACT

Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by hamartomatous growths in the brain, kidneys, lungs, skin, heart, and retina. TSC is caused by loss of function mutations in one of two tumor suppressor genes, TSC1 or TSC2. Two-thirds of individuals with TSC have de novo mutations, and individuals with postzygotic pathogenic variants in both TSC1 and TSC2 have been reported. The development of sensitive molecular methods, such as next generation sequencing, has led to an increased ability to detect low-level mosaic variants, which are typically thought to have milder phenotypes because a smaller fraction of cells in the body harbor the mutation. Here, we describe two patients with TSC who had severe phenotypic involvement, but only low-level mosaicism in TSC2. Given this apparent discrepancy and concern about a missed constitutional variant, we sampled multiple tissues in both cases to confirm these mosaic mutations. Sampling of multiple tissues can be crucial in molecular diagnosis of mosaic TSC. These cases highlight, in general, challenges in molecular diagnosis of genetic conditions due to postzygotic mutations.


Subject(s)
Brain/diagnostic imaging , Mosaicism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis/etiology , Adolescent , Brain/abnormalities , Brain/pathology , Child, Preschool , Female , Humans , Male , Mutation , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL