Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Food Microbiol ; 93: 103618, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32912576

ABSTRACT

A dynamic model to predict the germination and outgrowth of Clostridium botulinum spores in cooked ground beef was presented. Raw ground beef was inoculated with a ten-strain C. botulinum spore cocktail to achieve approximately 2 log spores/g. The inoculated ground beef was vacuum packaged, cooked to 71 °C to heat shock the spores, cooled to below 10 °C, and incubated isothermally at temperatures from 10 to 46 °C. C. botulinum growth was quantified and fitted into the primary Baranyi Model. Secondary models were fitted to maximum specific growth rate and lag phase duration using Modified Ratkowsky equation (R2 0.96) and hyperbolic function (R2 0.94), respectively. Similar experiments were also performed under non-isothermal (cooling) conditions. Acceptable zone prediction (APZ) analysis was conducted on growth data collected over 3 linear cooling regimes from the current study. The model performance (prediction errors) for all 22 validation data points collected in the current work were within the APZ limits (-1.0 to +0.5 log CFU/g). Additionally, two other growth data sets of C. botulinum reported in the literature were also subjected to the APZ analysis. In these validations, 20/22 and 10/14 predictions fell within the APZ limits. The model presented in this work can be employed to predict C. botulinum spore germination and growth in cooked uncured beef under non-isothermal conditions. The beef industry processors and food service organizations can utilize this predictive microbial model for cooling deviations and temperature abused situations and in developing customized process schedules for cooked, uncured beef products.


Subject(s)
Clostridium botulinum/growth & development , Cold Temperature , Cooking , Food Microbiology , Red Meat/microbiology , Animals , Cattle , Food Packaging , Food Safety , Foodborne Diseases/microbiology , Meat Products/microbiology , Models, Biological , Spores, Bacterial/growth & development , Temperature , Vacuum
2.
J Dairy Sci ; 97(11): 6671-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25200778

ABSTRACT

A Cheddar cheese model system, Cheddar cheese extract, was used to examine how different levels of known microbial hurdles (NaCl, pH, and lactic acid) in Cheddar cheese contribute to inhibition of bacterial pathogens. This knowledge is critical to evaluate the safety of Cheddar varieties with altered compositions. The range of levels used covered the lowest and highest level of these factors present in low-sodium, low-fat, and traditional Cheddar cheeses. Four pathogens were examined in this model system at 11 °C for 6 wk, with the lowest levels of these inhibitory factors that would be encountered in these products. The 4 pathogens examined were Salmonella enterica, Staphylococcus aureus, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli (STEC). None of these organisms were capable of growth under these conditions. The STEC exhibited the highest survival and hence was used to examine which of these inhibitory factors (NaCl, pH, and lactic acid) was primarily responsible for the observed inhibition. The STEC survival was examined in Cheddar cheese extract varying in NaCl (1.2 vs. 4.8%), lactic acid (2.7 vs. 4.3%), and pH (4.8 vs. 5.3) at 11 °C for 6 wk. The microbial hurdle found to have the greatest effect on STEC survival was pH. The interactions between pH and levels of protonated lactic acid and anionic lactic acid with STEC survival was also evaluated; only the concentration of protonated lactic acid was determined to have a significant effect on STEC survival. These results indicate that, of the pathogens examined, STEC is of the greatest concern in Cheddar varieties with altered compositions and that pH is the microbial hurdle primarily responsible for controlling STEC in these products.


Subject(s)
Cheese/microbiology , Lactic Acid/pharmacology , Shiga-Toxigenic Escherichia coli/drug effects , Shiga-Toxigenic Escherichia coli/growth & development , Sodium Chloride/pharmacology , Animals , Cheese/analysis , Hydrogen-Ion Concentration , Lactic Acid/analysis , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Salmonella enterica/drug effects , Salmonella enterica/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
3.
J Food Prot ; 87(1): 100191, 2024 01.
Article in English | MEDLINE | ID: mdl-37949411

ABSTRACT

Commercial cheese brines are used repeatedly over extended periods, potentially for years, and can be a reservoir for salt-tolerant pathogens, such as Listeria monocytogenes. The objective of this study was to determine the inactivation of L. monocytogenes in cheese brines treated with hydrogen peroxide (H2O2) (0, 50, and 100 ppm) at holding temperatures representing manufacturing conditions. In experiment one, four fresh cheese brines were prepared with 10 or 20% salt and pH 4.6 or 5.4 (2x2 design; duplicate trials). Brines were inoculated with L. monocytogenes, treated with H2O2, and stored at 10 and 15.6°C. For experiment two, seven used commercial brines (representing five cheese types, 15-30% NaCl, pH 4.5-5.5; three seasonal trials) were inoculated with L. monocytogenes or S. aureus, treated with H2O2, and stored at 12.8°C (both L. monocytogenes and S. aureus), 7.2 and 0°C (L. monocytogenes only). Each treatment was assayed on Days 0, 1, and 7 for microbial populations and residual H2O2. Data revealed that pathogen populations decreased ≤1 log in cheese brines with no hydrogen peroxide stored for 7 days, regardless of the storage temperature. In fresh brine treated with 50 or 100 ppm of H2O2, populations of L. monocytogenes were reduced to less than the detectable limit by 7 days at 10 and 15.6°C (>4 log reduction). For unfiltered used brines, H2O2 had no effect on L. monocytogenes populations in Brick J (pH 5.4, 15% NaCl) due to rapid inactivation of H2O2, likely by indigenous yeasts (∼3-log CFU/ml). For the remaining brines, the addition of 100 ppm H2O2 killed >4 log L. monocytogenes when stored at 7.2 or 12.8°C for 1 week, but only 3-4 log reduction when stored at 0°C. The addition of 50 ppm H2O2 had similar lethal effects at 12.8°C but was less effective at 7.2 or 0°C. Inactivation rates of S. aureus were similar to that of L. monocytogenes. This study confirmed that high salt, warmer temperature, and 100-ppm H2O2 accelerated the inactivation of L. monocytogenes in cheese brines. Data also suggest that the presence of catalase-positive indigenous microorganisms may neutralize the effect of H2O2.


Subject(s)
Cheese , Listeria monocytogenes , Salts , Hydrogen Peroxide/pharmacology , Cheese/analysis , Staphylococcus aureus , Sodium Chloride/pharmacology , Food Microbiology , Temperature , Colony Count, Microbial
4.
J Food Prot ; 87(6): 100271, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38561027

ABSTRACT

Cooked, uncured meat products packaged under reduced oxygen packaging conditions require the control of anaerobic and facultative anaerobic pathogens if they are held at temperatures greater than 3°C at retail or consumer level. The objective of this study was to determine the inhibition of Listeria monocytogenes and Clostridium botulinum in cooked, uncured shredded turkey and pork formulated with synthetic or clean-label antimicrobials. Treatments of shredded meat products were prepared with or without antimicrobials using turkey thigh or breast that were cooked to 85°C, shredded, and chilled before inoculation with the target pathogen. L. monocytogenes inoculated samples were stored at 7.2°C, whereas C. botulinum samples were stored at 12.8°C; triplicate samples were assayed every 2 weeks. In the first set of experiments, L. monocytogenes populations increased 2 to 3 logs within 2 weeks of storage at 7.2°C in both meat control treatments without antimicrobials and in pork with 4% lactate-diacetate blend (LD). A 1-log increase was observed in turkey with 4% LD and Pork with 2% cultured dextrose-vinegar-rosemary (CDVR) under the same storage conditions; a 1-log increase was observed in turkey with CDVR at 4 weeks. The second set of experiments tested the effect of pH reduction (to less than 5.5 by the addition of 0.5% citric acid) in combination with 2% CDVR when added to the brine precook or postcook during shredding. Populations of L. monocytogenes increased 4-log within 2 and 4 weeks at 7.2°C for the control turkey and pork formulations, respectively. No growth was observed in 12 weeks for any antimicrobial CDVR-CA treatments regardless of how antimicrobial was added. Similarly, botulinum toxin was detected in both control treatments at week 2 at 12.8°C, but no toxicity was observed in either antimicrobial treatment through 12 weeks. These data suggest that a combination of 2% cultured dextrose-vinegar-rosemary extract plus 0.5% citric acid to reduce pH inhibits the growth of L. monocytogenes and toxin production of C. botulinum in uncured shredded turkey and pork products stored under mild temperature abuse conditions for up to 12 weeks in reduced oxygen packaging.


Subject(s)
Clostridium botulinum , Colony Count, Microbial , Food Microbiology , Listeria monocytogenes , Oxygen , Turkeys , Listeria monocytogenes/drug effects , Animals , Clostridium botulinum/drug effects , Swine , Humans , Food Packaging/methods , Meat Products/microbiology , Food Preservation/methods , Food Contamination/analysis , Temperature
5.
J Food Sci ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39289814

ABSTRACT

Most Americans exceed the recommended limit for sodium in their diet, a risk factor for hypertension and cardiovascular disease. Efforts have been made by the food industry and government agencies to reduce the sodium content in foods and encourage the consumption of lower sodium diets. Such efforts, however, are not successful in improving public health when consumers do not accept and consume lower sodium foods. This review article provides an overview of the strategies that have been used by the US food industry to reduce and replace sodium in consumer packaged goods, as well as future sodium reduction strategies and approaches for replacing sodium with potassium salts. Challenges in consumer acceptance regarding the reduction of sodium in foods are also discussed. Because of the widespread consumption of numerous sodium-containing consumer packaged goods, implementing future strategies in various aspects of salt reduction and potassium replacement in foods should have a profound impact on the health of Americans. PRACTICAL APPLICATION: New information is provided herein as it discusses the most current and collective perspectives of major food industry successes and challenges, as well as government strategies to decrease sodium intake. The information provided also addresses future strategies for reducing sodium content in foods, increasing potassium intake, and consumer acceptance of lower sodium foods.

6.
J Food Prot ; 87(8): 100317, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878899

ABSTRACT

The 2021 FSIS Stabilization Guidelines for Meat and Poultry Products (Appendix B) Option 1.2 limits Phase 1 cooling from 48.8 to 26.7 °C in uncured meats to 1 h. However, this time restriction is impractical to achieve in large-diameter whole-muscle products. The objective of this study was to compare the inhibitory effect of commercial dry vinegars (DVs) and cultured sugar-vinegar blends (CSVs) on Clostridium perfringens and Bacillus cereus in uncured beef and poultry products during extended cooling. Treatments (beef: 72-73% moisture, pH 6.2-6.3, 0.85-0.95% NaCl; turkey: 76-77% moisture, pH 6.5-6.7, 1.3-1.6% NaCl) included Controls without antimicrobials, and four DV and four CSV, each tested at 0.75 and 1.25%. Batches were inoculated with 2.5-log C. perfringens or B. cereus spores, vacuum-packaged, and cooked to 73 °C. Packages were cooled from 48.8 to 27 °C (Phase 1) in 3, 4, or 5 h; Phase 2 (27-12.8 °C) and Phase 3 (12.8-4 °C) were standardized for 5-h cooling each. Pathogens were enumerated on selective agar in triplicate samples assayed at precook, postcook, and at the end of Phase 1, 2, and 3 cooling. Experiments were conducted twice. B. cereus did not grow (<0.5-log increase) in any treatment when Phase 1 cooling was extended to 5 h. C. perfringens grew rapidly (2.5 to >4.5 log) in Control treatments when Phase 1 cooling was extended to ≥3 h. All 1.25% DV ingredients limited C. perfringens growth to ≤1-log when Phase 1 cooling was extended to 3 h but supported a >1-log increase when Phase 1 cooling was extended to 5 h. All 1.25% CSV inhibited growth under 3-h Phase 1 cooling; 1.25% CSV-A and ≥0.75% CSV-D inhibited growth in turkey during 5-h Phase 1 cooling, but inhibition with 1.25% CSV-C was inconsistent in beef. This study revealed that formulating uncured meats with 1.25% DV or certain CSV can extend Phase 1 cooling to 3 h. Although all ingredients inhibited growth when used at 0.75% or greater compared to a control, greater variability of inhibition was observed among CSV than for DV.


Subject(s)
Acetic Acid , Bacillus cereus , Clostridium perfringens , Food Microbiology , Clostridium perfringens/drug effects , Animals , Bacillus cereus/drug effects , Cattle , Acetic Acid/pharmacology , Colony Count, Microbial , Meat Products/microbiology , Poultry , Poultry Products/microbiology , Food Preservation/methods
7.
J Food Prot ; 85(9): 1287-1299, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35666586

ABSTRACT

ABSTRACT: Prior to a deadly 2014 listeriosis outbreak, caramel apples were not thought to be vehicles for the foodborne pathogen Listeria monocytogenes. The purpose of this review article is to summarize what has been learned from research prompted by this outbreak. This overview includes descriptions of the two L. monocytogenes infection outbreaks related to prepackaged caramel apples and a brief discussion of apple sanitation, the production processes used to make caramel apples, and research on ways to prevent future outbreaks associated with caramel apples. A qualitative analysis of the literature and interviews with current caramel apple manufacturers were conducted. Sanitation, packaging, and storage procedures used by manufacturers in the past may not effectively inactivate L. monocytogenes from contaminated product. Novel apple sanitation methods and product formulations to control L. monocytogenes on caramel apples have been developed and, in some cases, implemented in commercial production.


Subject(s)
Foodborne Diseases , Listeria monocytogenes , Listeriosis , Malus , Disease Outbreaks , Food Microbiology , Foodborne Diseases/epidemiology , Humans , Listeriosis/epidemiology , Sanitation
8.
J Food Prot ; 84(5): 772-780, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33290511

ABSTRACT

ABSTRACT: Biopreservatives are clean-label ingredients used to control pathogenic and spoilage microorganisms in ready-to-eat foods, including cheese. In a first set of experiments, the efficacies of six commercial biopreservatives in controlling Listeria monocytogenes growth at 4°C were tested in a high-moisture model cheese (pH 6.00, 56% moisture, and 1.25% salt) made of cream, micellar casein, water, salt, lactose, lactic acid, and a single protective culture (PC-1, PC-2, or PC-3 at 106 CFU/g [target]) or bacterial fermentate (CM-1 or CM-2 [cultured milk] or CSV-1 [cultured sugar-vinegar blend], 0.5 or 1.0% target level). Cheeses were inoculated with 3 log CFU/g L. monocytogenes (5-strain cocktail), after which 25-g samples were vacuum sealed and stored at 4°C for 8 weeks. L. monocytogenes populations from triplicate samples were enumerated weekly on modified Oxford agar in duplicate trials. L. monocytogenes growth (≥1-log increase) was observed in approximately 1 week in control cheese and those formulated with 106 CFU of PC-1 or PC-2 per g. Growth was delayed to 2.5 weeks in model cheeses formulated with 106 CFU of PC-3 per g or 0.5% CM-2 and to 3 weeks with 0.5% CM-1 or CSV-1. Growth was further delayed to 6.5 to 7.5 weeks in model cheeses formulated with 1.0% CM-1 or CM-2, while formulation with 1.0% CSV-1 inhibited L. monocytogenes growth for 8 weeks. In a second set of experiments, the combined effects of pH and 0.5% CSV-1 on L. monocytogenes inhibition were investigated. Incorporation of 0.5% CSV-1 delayed L. monocytogenes growth to 3, 6, and >10 weeks in cheeses of pH 6.00, 5.75, and 5.50, respectively, versus growth observed in 1, 1, and 3.5 weeks in control cheeses. These data suggest that certain fermentates have greater antilisterial activity than protective cultures in directly acidified cheeses with direct biopreservative incorporation and refrigerated storage. Further research is needed to optimize the conditions to prevent listerial growth by utilizing protective cultures in fresh, soft cheeses.


Subject(s)
Cheese , Listeria monocytogenes , Acetic Acid , Cheese/analysis , Colony Count, Microbial , Food Microbiology , Vacuum
9.
Food Res Int ; 149: 110695, 2021 11.
Article in English | MEDLINE | ID: mdl-34600690

ABSTRACT

Cooking temperature of poultry meat is typically inadequate to inactivate the heat resistant spores of Clostridium botulinum. The purpose of this study is to develop a predictive model for C. botulinum during cooling of cooked ground chicken. Cooked chicken was inoculated with a cocktail of five strains of proteolytic C. botulinum type A and five strains of proteolytic C. botulinum type B to yield a final spore concentration of approximately 2 log CFU/g. The growth of C. botulinum was determined at constant temperatures from 10 to 46 °C. Dynamic temperature experiments were performed with continued cooling from 54.4 to 4.4 °C or 7.2 °C in mono- or bi-phasic cooling profiles, respectively. The Baranyi primary model was used to fit growth data and the modified Ratkowsky secondary model was used to fit growth rates with respect to temperature. The primary models fitted the growth data well (R2 values ranging from 0.811 to 0.988). The R2 and root mean square error (RMSE) of the modified Ratkowsky secondary model were 0.95 and 0.06, respectively. Out of 11 prediction error values calculated in this study, ten were within the limit of acceptable prediction zone (-1.0 to 0.5), indicating a good fit of the model. The predictive model will assist institutional food service operations in determining the safety of cooked ground chicken subjected to different cooling periods.


Subject(s)
Clostridium botulinum , Meat Products , Animals , Chickens , Colony Count, Microbial , Cooking , Food Microbiology , Models, Biological , Spores, Bacterial
10.
Compr Rev Food Sci Food Saf ; 9(1): 44-56, 2010 Jan.
Article in English | MEDLINE | ID: mdl-33467812

ABSTRACT

Sodium is an essential nutrient with important functions in regulating extracellular fluid volume and the active transport of molecules across cell membranes. However, recent estimates from NHANES III (Third National Health and Nutrition Examination Survey) data show that over 95% of men and over 75% of women exceed the recommended daily tolerable upper intake of sodium. Since these high levels of dietary sodium are associated with a high prevalence of hypertension, prehypertension and, possibly, other adverse effects on health, many national and international health organizations recommend that sodium intake be significantly decreased. Traditionally, salt (sodium chloride) has been used as a food preservative that kills or limits the growth of foodborne pathogens and spoilage organisms by decreasing water activity. Salt also performs other important functions in foods by adding flavor and masking bitter tastes, controlling growth of yeast and fermentative bacteria, and promoting binding of proteins and other components in foods to achieve desired textures. Many processed foods contain high levels of salt and several countries have developed national programs for significantly reducing the sodium chloride content in many processed foods and encouraging a decrease in discretionary salt use. This review considers published data on the apparent adverse health effects of excess salt intake as well as the important functions of salt in different foods and possible strategies for reducing sodium levels in processed foods while still producing safe foods that consumers find acceptable.

11.
J Food Prot ; 83(8): 1335-1344, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32221553

ABSTRACT

ABSTRACT: High-moisture, low-acid cheeses have been shown to support Listeria monocytogenes growth during refrigerated storage. Prior studies suggest that organic acids vary in their antilisterial activity and that cheeses of lower pH delay growth longer than those of higher pH; however, no standard pH value for Listeria control in cheese exists. The objective of this research was to create a predictive model to include the effects of acid type, pH, and moisture on the growth of L. monocytogenes in a model cheese system. Cream, micellar casein, water, lactose, salt, and acid (citric, lactic, acetic, or propionic) were combined in 32 formulations targeting 4 pH values (5.25, 5.50, 5.75, and 6.00) and two moisture levels (50 and 56%). Each was inoculated with 3 log CFU/g L. monocytogenes (five-strain mixture) after which 25-g samples were vacuum sealed and stored 8 weeks at 4°C. Triplicate samples were enumerated on modified Oxford agar weekly in duplicate trials. Model cheeses formulated with acetic and propionic acids inhibited growth (i.e., no observed increase in L. monocytogenes populations over 8 weeks) at pH ≤5.75, while those formulated with lactic acid inhibited growth at pH 5.25 only. In contrast, all model cheeses formulated with citric acid supported growth. Resulting growth curves were fitted for lag phase and growth rate before constructing models for each. The pH and acid type were found to significantly affect both growth parameters (P < 0.05), while moisture (50 to 56%) was not statistically significant in either model (P ≥ 0.05). The effects of acetic and propionic acid were not significantly different. In contrast, model cheeses made with citric acid had significantly shorter lag phases than the other acids tested, but growth rates after lag were statistically similar to model cheeses made with lactic acid. These data suggest propionic ∼ acetic > lactic > citric acids in antilisterial activity within the model cheese system developed and can be used in formulating safe high-moisture cheeses.


Subject(s)
Cheese , Listeria monocytogenes , Cheese/analysis , Food Microbiology , Hydrogen-Ion Concentration , Temperature , Vacuum
12.
J Food Prot ; 70(10): 2306-12, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17969612

ABSTRACT

The objective of this study was to identify concentrations of sorbate, benzoate, and propionate that prevent the growth of Listeria monocytogenes on sliced, cooked, uncured turkey breast and cured ham. Sixteen test formulations plus a control formulation for each product type were manufactured to include potassium sorbate, sodium benzoate, or sodium propionate, used alone and combined (up to 0.3% [wt/wt]), or with sodium lactate-sodium diacetate combinations. Products were inoculated with L. monocytogenes (5 log CFU/100-g package) and stored at 4, 7, or 10 degrees C for up to 12 weeks, and triplicate samples per treatment were assayed biweekly by plating on modified Oxford agar. Data showed that 0.1% benzoate, 0.2% propionate, 0.3% sorbate, or a combination of 1.6% lactate with 0.1% diacetate prevented the growth of L. monocytogenes on ham stored at 4 degrees C for 12 weeks, compared with greater than a 1-log increase at 4 weeks for the control ham without antimicrobials. When no nitrite was included in the formulation, 0.2% propionate used alone, a combination of 0.1% propionate with 0.1% sorbate, or a combination of 3.2% lactate with 0.2% diacetate was required to prevent listerial growth on the product stored at 4 degrees C for 12 weeks. Inhibition was less pronounced when formulations were stored at abuse temperatures. When stored at 7 degrees C, select treatments delayed listerial growth for 4 weeks but supported significant growth at 8 weeks. All treatments supported more than a 1-log increase in listerial populations when stored at 10 degrees C for 4 weeks. These results verify that antimycotic agents inhibit the growth of L. monocytogenes on ready-to-eat meats but aremore effective when used in combination with nitrite.


Subject(s)
Food Preservation/methods , Food Preservatives/pharmacology , Listeria monocytogenes/drug effects , Meat Products/microbiology , Animals , Benzoates/pharmacology , Colony Count, Microbial , Consumer Product Safety , Dose-Response Relationship, Drug , Drug Synergism , Food Contamination , Food Microbiology , Humans , Listeria monocytogenes/growth & development , Microbial Sensitivity Tests , Propionates/pharmacology , Sorbic Acid/pharmacology , Swine , Temperature , Time Factors , Turkeys
13.
J Food Prot ; 80(9): 1478-1488, 2017 09.
Article in English | MEDLINE | ID: mdl-28786718

ABSTRACT

The 1986 Food Research Institute-Tanaka et al. model predicts the safety of shelf-stable process cheese spread formulations using the parameters of moisture, pH, NaCl, and disodium phosphate (DSP) to inhibit toxin production by Clostridium botulinum. Although this model is very reliable for predicting safety for standard-of-identity spreads, the effects of additional factors have not been considered. The objective of this study was to create a predictive model to include the interactive effect of moisture, pH, fat, sorbic acid, and potassium-based replacements for NaCl and DSP to reflect modern reduced-sodium recipes. Eighty formulations were identified using a central composite design targeting seven factors: 50 to 60% moisture, pH 5.4 to 6.2, 0 to 0.2% sorbic acid, 10 to 30% fat, 1.7 to 2.4% NaCl, 0.8 to 1.6% DSP, and 0 to 50% potassium replacement for sodium salts. Samples were inoculated with proteolytic C. botulinum spores at 3 log spores per g, hot filled into sterile vials, and stored anaerobically at 27°C. Samples were assayed at 0, 1, 2, 3, 4, 8.5, 17.5, 26, and 40 weeks for the presence of botulinum toxin using the mouse bioassay. A parametric survival model was fit to the censored time-to-toxin data. All linear, quadratic, and pairwise effects were considered for model fit. As hypothesized, the effects of pH, sorbate, moisture, DSP, and NaCl were highly significant (P < 0.001). Fat concentration and potassium replacement effects were significant at P < 0.021 and P < 0.057, respectively. The model consistently predicted the safety failure of the toxic samples, but it also predicted failure for some samples that were not toxic. This model is an adjunct to existing models by adding the factors of potassium salts, fat, and sorbic acid to predict the botulinal safety of prepared process cheese products but is not intended to be a substitute for formulation evaluation by a competent process authority.


Subject(s)
Botulinum Toxins/biosynthesis , Cheese/microbiology , Clostridium botulinum/growth & development , Food Microbiology , Food Preservation/methods , Animals , Clostridium botulinum/drug effects , Clostridium botulinum/metabolism , Consumer Product Safety , Humans , Hydrogen-Ion Concentration , Sodium , Temperature
14.
J Food Prot ; 80(10): 1697-1704, 2017 10.
Article in English | MEDLINE | ID: mdl-28885050

ABSTRACT

To control the growth of Clostridium perfringens in cured meat products, the meat and poultry industries commonly follow stabilization parameters outlined in Appendix B, "Compliance Guidelines for Cooling Heat-Treated Meat and Poultry Products (Stabilization)" ( U.S. Department of Agriculture, Food Safety and Inspection Service [USDA-FSIS], 1999 ) to achieve cooling (54.4 to 4.4°C) within 15 h after cooking. In this study, extended cooling times and their impact on C. perfringens growth were examined. Phase 1 experiments consisted of cured ham with 200 mg/kg ingoing sodium nitrite and 547 mg/kg sodium erythorbate following five bilinear cooling profiles: a control (following Appendix B guidelines: stage A cooling [54.4 to 26.7°C] for 5 h, stage B cooling [26.7 to 4.4°C] for 10 h), extended stage A cooling for 7.5 or 10 h, and extended stage B cooling for 12.5 or 15 h. A positive growth control with 0 mg/kg nitrite added (uncured) was also included. No growth was observed in any treatment samples except the uncured control (4.31-log increase within 5 h; stage A). Phase 2 and 3 experiments were designed to investigate the effects of various nitrite and erythorbate concentrations and followed a 10-h stage A and 15-h stage B bilinear cooling profile. Phase 2 examined the effects of nitrite concentrations of 0, 50, 75, 100, 150, and 200 mg/kg at a constant concentration of erythorbate (547 mg/kg). Results revealed changes in C. perfringens populations for each treatment of 6.75, 3.59, 2.43, -0.38, -0.48, and -0.50 log CFU/g, respectively. Phase 3 examined the effects of various nitrite and erythorbate concentrations at 100 mg/kg nitrite with 0 mg/kg erythorbate, 100 with 250, 100 with 375, 100 with 547, 150 with 250, and 200 with 250, respectively. The changes in C. perfringens populations for each treatment were 4.99, 2.87, 2.50, 1.47, 0.89, and -0.60 log CFU/g, respectively. Variability in C. perfringens growth for the 100 mg/kg nitrite with 547 mg/kg erythorbate treatment was observed between phases 2 and 3 and may have been due to variations in treatment pH and NaCl concentrations. This study revealed the importance of nitrite and erythorbate for preventing growth of C. perfringens during a much longer (25 h) cooling period than currently specified in the USDA-FSIS Appendix B.


Subject(s)
Ascorbic Acid/pharmacology , Clostridium perfringens/drug effects , Food Handling/methods , Meat Products , Nitrites/pharmacology , Clostridium perfringens/growth & development , Colony Count, Microbial , Food Microbiology , Meat Products/microbiology , Meat Products/standards , Spores, Bacterial
15.
J Food Prot ; 80(8): 1252-1258, 2017 08.
Article in English | MEDLINE | ID: mdl-28686492

ABSTRACT

Clostridium botulinum is a foreseeable biological hazard in prepared refrigerated meals that needs to be addressed in food safety plans. The objective of this study was to evaluate the effect of product composition and storage temperature on the inhibition of botulinum toxin formation in nine experimental meals (meat, vegetable, or carbohydrate based). Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin in samples stored at 25°C for up to 96 h for phase 1, or at 25°C for 12 h and then transferred to 12.5°C for up to 12 and 6 weeks in phases 1 and 2, respectively. For phase 1, none of the treatments (equilibrated pH 5.8) supported toxin production when stored at 25°C for 48 h, but toxin production was observed in all treatments at 72 h. For the remaining experiments with storage at 12.5°C, toxin production was dependent on equilibrated pH, storage time, and growth of indigenous spoilage microorganisms. In phase 1, no gross spoilage and no botulinum toxin was detected for any treatment (pH ≤5.8) stored at 12.5°C for 12 weeks. In phase 2, gross spoilage varied by commodity, with the brussels sprouts meal with pH 6.5 showing the most rapid spoilage within 2 weeks and botulinum toxin detected at 5 and 6 weeks for the control and cultured celery juice treatments, respectively. In contrast, spoilage microbes decreased the pH of a pH 5.9 beef treatment by 1.0 unit, potentially inhibiting C. botulinum through 6 weeks at 12.5°C. None of the other treatments with pH 5.8 or below supported toxin production or spoilage. This study provides validation for preventive controls in refrigerated meals. These include equilibrated product pH and storage temperature and time to inhibit toxin formation by proteolytic C. botulinum, but the impact of indigenous microflora on safety and interpretation of challenge studies is also highlighted.


Subject(s)
Botulinum Toxins/biosynthesis , Clostridium botulinum/metabolism , Food Preservation/methods , Animals , Consumer Product Safety , Food Microbiology , Food Packaging , Humans , Hydrogen-Ion Concentration , Temperature , Time Factors
16.
J Food Prot ; 80(8): 1259-1265, 2017 08.
Article in English | MEDLINE | ID: mdl-28686493

ABSTRACT

Clostridium botulinum may be of concern in prepared refrigerated meals, for which strict cold chain management cannot be guaranteed. This study evaluated the effect of temperature, product composition, and cultured celery juice powder (CCJP) as a source of nitrite on the inhibition of botulinum toxin formation in two experimental (meat- and vegetable-based) prepared meals. Data obtained from the challenge study were compared with a published mathematical model to determine whether the model is fail-safe with regard to the tested meals. Treatments were inoculated with proteolytic C. botulinum, vacuum packaged, cooked at 90°C for 10 min, and assayed for botulinum toxin at appropriate intervals in samples stored at 10, 15, or 20°C for up to 8 weeks. None of the treatments stored at 10°C for 8 weeks supported toxin production by proteolytic C. botulinum. The addition of CCJP delayed toxin production by 1 and 3 weeks in cauliflower potatoes and in Dijon pork, respectively, stored at 15°C. Toxin production was delayed by 1 week at 20°C when CCJP was added to the cauliflower potatoes. This study found that the predictive model was fail-safe but was overly conservative for the experimental meals described. Finally, this study confirms that product composition, the addition of nitrite via CCJP, storage time, and temperature play important roles in the inhibition of toxin formation by proteolytic C. botulinum.


Subject(s)
Apium , Botulinum Toxins/analysis , Food Handling/methods , Temperature , Animals , Botulinum Toxins/biosynthesis , Clostridium botulinum , Food Microbiology , Red Meat , Swine
17.
J Food Sci ; 81(3): M672-83, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26878335

ABSTRACT

Interest in natural/organic meat products has resulted in the need to validate the effectiveness of clean label antimicrobials to increase safety and shelf life of these products. A Response Surface Methodology (RSM) was used to investigate the effects of varying levels of moisture, pH, and a commercial "clean-label" antimicrobial (cultured sugar-vinegar blend; CSVB) on the growth rate of Listeria monocytogenes and Leuconostoc mesenteroides in uncured turkey stored at 4 °C for 16 wk. Twenty treatment combinations of moisture (60% to 80%), pH (5.8 to 6.4), and CSVB (2.5% to 5.0%) were evaluated during phase I to develop growth curves for both microbe types, whereas the interactive effects of pH (5.8 to 6.4) and CSVB (0.0 to 4.75) were tested in 16 treatment combinations during Phase II at a single moisture level using L. monocytogenes only. CSVB inhibited L. monocytogenes growth in 14 of the 20 treatments tested in Phase I and in 12 of the 16 treatments in Phase II through 16 and 8 wk, respectively. In contrast, CSVB had little effect on L. mesenteroides, with growth inhibited in only 4 of 20 treatments in Phase I and was therefore not tested further in Phase II. Significant interactions of the RSM design coefficients yielded a predictive model for L. mesenteroides growth rate, but due to lack of growth, no growth rate model was developed for L. monocytogenes. CSVB was found to be an effective antilisteral antimicrobial, while having little effect on a spoilage microorganism.


Subject(s)
Acetic Acid/pharmacology , Anti-Bacterial Agents/pharmacology , Carbohydrates/pharmacology , Food Preservation/methods , Leuconostoc/drug effects , Listeria monocytogenes/drug effects , Meat Products/microbiology , Animals , Colony Count, Microbial , Consumer Product Safety , Food Microbiology , Food Storage/methods , Humans , Hydrogen-Ion Concentration , Leuconostoc/growth & development , Listeria monocytogenes/growth & development , Meat/microbiology , Temperature , Turkeys , Water
18.
J Food Prot ; 79(2): 184-93, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26818978

ABSTRACT

Sodium nitrite has been identified as a key antimicrobial ingredient to control pathogens in ready-to-eat (RTE) meat and poultry products, including Listeria monocytogenes. This study was designed to more clearly elucidate the relationship between chemical factors (ingoing nitrite, ascorbate, and residual nitrite) and L. monocytogenes growth in RTE meats. Treatments of cooked, cured pork sausage (65% moisture, 1.8% salt, pH 6.6, and water activity 0.98) were based on response surface methodology with ingoing nitrite and ascorbate concentrations as the two main factors. Concentrations of nitrite and ascorbate, including star points, ranged from 0 to 352 and 0 to 643 ppm, respectively. At one of two time points after manufacturing (days 0 and 28), half of each treatment was surface inoculated to target 3 log CFU/g of a five-strain L. monocytogenes cocktail, vacuum packaged, and stored at 7°C for up to 4 weeks. Growth of L. monocytogenes was measured twice per week, and enumerations were used to estimate lag time and growth rates for each treatment. Residual nitrite concentrations were measured on days 0, 4, 7, 14, 21, and 28, and nitrite depletion rate was estimated by using first-order kinetics. The response surface methodology was used to model L. monocytogenes lag time and growth rate based on ingoing nitrite, ascorbate, and the residual nitrite remaining at the point of inoculation. Modeling results showed that lag time was impacted by residual nitrite concentration remaining at inoculation, as well as the squared term of ingoing nitrite, whereas growth rate was affected by ingoing nitrite concentration but not by the remaining residual nitrite at the point of inoculation. Residual nitrite depletion rate was dependent upon ingoing nitrite concentration and was only slightly affected by ascorbate concentration. This study confirmed that ingoing nitrite concentration influences L. monocytogenes growth in RTE products, yet residual nitrite concentration contributes to the antimicrobial impact of nitrite as well.


Subject(s)
Ascorbic Acid/pharmacology , Drug Residues/pharmacology , Food Preservatives/pharmacology , Listeria monocytogenes/growth & development , Meat Products/microbiology , Sodium Nitrite/pharmacology , Animals , Ascorbic Acid/analysis , Colony Count, Microbial , Cooking , Drug Residues/analysis , Food Preservation , Kinetics , Listeria monocytogenes/chemistry , Listeria monocytogenes/drug effects , Models, Biological , Sodium Nitrite/analysis , Swine
19.
J Food Prot ; 78(5): 946-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25951389

ABSTRACT

Organic acids and sodium nitrite have long been shown to provide antimicrobial activity during chilling of cured meat products. However, neither purified organic acids nor NaNO2 is permitted in products labeled natural and both are generally avoided in clean-label formulations; efficacy of their replacement is not well understood. Natural and clean-label antimicrobial alternatives were evaluated in both uncured and in alternative cured (a process that uses natural sources of nitrite) deli-style turkey breast to determine inhibition of Clostridium perfringens outgrowth during 15 h of chilling. Ten treatments of ground turkey breast (76% moisture, 1.2% salt) included a control and four antimicrobials: 1.0% tropical fruit extract, 0.7% dried vinegar, 1.0% cultured sugar-vinegar blend, and 2.0% lemon-vinegar blend. Each treatment was formulated without (uncured) and with nitrite (PCN; 50 ppm of NaNO2 from cultured celery juice powder). Treatments were inoculated with C. perfringens spores (three-strain mixture) to yield 2.5 log CFU/g. Individual 50-g portions were vacuum packaged, cooked to 71.1°C, and chilled from 54.4 to 26.7°C in 5 h and from 26.7 to 7.2°C in an additional 10 h. Triplicate samples were assayed for growth of C. perfringens at predetermined intervals by plating on tryptose-sulfite-cycloserine agar. Uncured control and PCN-only treatments allowed for 4.6- and 4.2-log increases at 15 h, respectively, and although all antimicrobial treatments allowed less outgrowth than uncured and PCN, the degree of inhibition varied. The 1.0% fruit extract and 1.0% cultured sugar-vinegar blend were effective at controlling populations at or below initial levels, whether or not PCN was included. Without PCN, 0.7% dried vinegar and 2.0% lemon-vinegar blend allowed for 2.0- and 2.5-log increases, respectively, and ∼1.5-log increases with PCN. Results suggest using clean-label antimicrobials can provide for safe cooling following the study parameters, and greater inhibition of C. perfringens may exist when antimicrobials are used with nitrite.


Subject(s)
Anti-Infective Agents/pharmacology , Clostridium perfringens/drug effects , Meat Products/microbiology , Nitrites/pharmacology , Acetic Acid , Animals , Apium , Beverages , Citrus , Clostridium perfringens/growth & development , Cold Temperature , Colony Count, Microbial , Food Contamination/prevention & control , Food Handling , Food Microbiology , Food Preservation , Food Preservatives/chemistry , Hydrogen-Ion Concentration , Turkeys , Vacuum
20.
J Food Prot ; 78(6): 1215-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26038916

ABSTRACT

Shelf-stable, ready-to-eat meat and poultry products represent a large sector of the meat snack category in the meat and poultry industry. Determining the physiochemical conditions that prevent the growth of foodborne pathogens, namely, Staphylococcus aureus postprocessing, is not entirely clear. Until recently, pH and water activity (a(w)) criteria for shelf stability has been supported from the U.S. Department of Agriculture training materials. However, concern about the source and scientific validity of these critical parameters has brought their use into question. Therefore, the objective of this study was to evaluate different combinations of pH and aw that could be used for establishing scientifically supported shelf stability criteria defined as preventing S. aureus growth postprocessing. Snack sausages were manufactured with varying pH (5.6, 5.1, and 4.7) and a(w) (0.96, 0.92, and 0.88) to achieve a total of nine treatments. The treatments were inoculated with a three-strain mixture of S. aureus, with populations measured at days 0, 7, 14, and 28 during 21 °C storage. Results revealed treatments with a pH ≤ 5.1 and a(w) ≤ 0.96 did not support the growth of S. aureus and thus could be considered shelf stable for this pathogen. The results provide validated shelf stability parameters to inhibit growth of S. aureus in meat and poultry products.


Subject(s)
Food Contamination/prevention & control , Food Microbiology/methods , Meat Products/microbiology , Poultry Products/microbiology , Staphylococcus aureus/growth & development , Water/chemistry , Animals , Colony Count, Microbial , Hydrogen-Ion Concentration , Meat , Poultry , Snacks , Staphylococcus aureus/isolation & purification , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL