Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Mol Cell ; 84(13): 2472-2489.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996458

ABSTRACT

Pseudouridine (Ψ), the isomer of uridine, is ubiquitously found in RNA, including tRNA, rRNA, and mRNA. Human pseudouridine synthase 3 (PUS3) catalyzes pseudouridylation of position 38/39 in tRNAs. However, the molecular mechanisms by which it recognizes its RNA targets and achieves site specificity remain elusive. Here, we determine single-particle cryo-EM structures of PUS3 in its apo form and bound to three tRNAs, showing how the symmetric PUS3 homodimer recognizes tRNAs and positions the target uridine next to its active site. Structure-guided and patient-derived mutations validate our structural findings in complementary biochemical assays. Furthermore, we deleted PUS1 and PUS3 in HEK293 cells and mapped transcriptome-wide Ψ sites by Pseudo-seq. Although PUS1-dependent sites were detectable in tRNA and mRNA, we found no evidence that human PUS3 modifies mRNAs. Our work provides the molecular basis for PUS3-mediated tRNA modification in humans and explains how its tRNA modification activity is linked to intellectual disabilities.


Subject(s)
Cryoelectron Microscopy , Hydro-Lyases , Pseudouridine , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/genetics , HEK293 Cells , Hydro-Lyases/metabolism , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Pseudouridine/metabolism , Pseudouridine/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Catalytic Domain , Protein Binding , Mutation , Models, Molecular , Substrate Specificity , Intellectual Disability/genetics , Intellectual Disability/metabolism , Intellectual Disability/enzymology , Intramolecular Transferases
2.
Cell ; 164(5): 999-1014, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26875865

ABSTRACT

Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.


Subject(s)
GATA4 Transcription Factor/metabolism , Homeodomain Proteins/metabolism , Myocardium/cytology , Organogenesis , T-Box Domain Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Differentiation , Crystallography, X-Ray , Embryo, Mammalian/metabolism , Homeobox Protein Nkx-2.5 , Homeodomain Proteins/genetics , Mice , Mice, Transgenic , Models, Molecular , Myocardium/metabolism , Promoter Regions, Genetic , Protein Interaction Domains and Motifs , T-Box Domain Proteins/genetics , Transcription Factors/genetics
3.
EMBO J ; 41(20): e111318, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36102610

ABSTRACT

Post-translational modifications by ubiquitin-like proteins (UBLs) are essential for nearly all cellular processes. Ubiquitin-related modifier 1 (Urm1) is a unique UBL, which plays a key role in tRNA anticodon thiolation as a sulfur carrier protein (SCP) and is linked to the noncanonical E1 enzyme Uba4 (ubiquitin-like protein activator 4). While Urm1 has also been observed to conjugate to target proteins like other UBLs, the molecular mechanism of its attachment remains unknown. Here, we reconstitute the covalent attachment of thiocarboxylated Urm1 to various cellular target proteins in vitro, revealing that, unlike other known UBLs, this process is E2/E3-independent and requires oxidative stress. Furthermore, we present the crystal structures of the peroxiredoxin Ahp1 before and after the covalent attachment of Urm1. Surprisingly, we show that urmylation is accompanied by the transfer of sulfur to cysteine residues in the target proteins, also known as cysteine persulfidation. Our results illustrate the role of the Uba4-Urm1 system as a key evolutionary link between prokaryotic SCPs and the UBL modifications observed in modern eukaryotes.


Subject(s)
Ubiquitin , Ubiquitins , Anticodon , Carrier Proteins/metabolism , Cysteine , Peroxiredoxins , Sulfur/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism
4.
Nucleic Acids Res ; 52(6): 3419-3432, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38426934

ABSTRACT

Betacoronaviruses are a genus within the Coronaviridae family of RNA viruses. They are capable of infecting vertebrates and causing epidemics as well as global pandemics in humans. Mitigating the threat posed by Betacoronaviruses requires an understanding of their molecular diversity. The development of novel antivirals hinges on understanding the key regulatory elements within the viral RNA genomes, in particular the 5'-proximal region, which is pivotal for viral protein synthesis. Using a combination of cryo-electron microscopy, atomic force microscopy, chemical probing, and computational modeling, we determined the structures of 5'-proximal regions in RNA genomes of Betacoronaviruses from four subgenera: OC43-CoV, SARS-CoV-2, MERS-CoV, and Rousettus bat-CoV. We obtained cryo-electron microscopy maps and determined atomic-resolution models for the stem-loop-5 (SL5) region at the translation start site and found that despite low sequence similarity and variable length of the helical elements it exhibits a remarkable structural conservation. Atomic force microscopy imaging revealed a common domain organization and a dynamic arrangement of structural elements connected with flexible linkers across all four Betacoronavirus subgenera. Together, these results reveal common features of a critical regulatory region shared between different Betacoronavirus RNA genomes, which may allow targeting of these RNAs by broad-spectrum antiviral therapeutics.


Subject(s)
Betacoronavirus , RNA, Viral , Betacoronavirus/genetics , Cryoelectron Microscopy , Genome, Viral/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA, Viral/ultrastructure , SARS-CoV-2/genetics
5.
Nat Chem Biol ; 19(4): 507-517, 2023 04.
Article in English | MEDLINE | ID: mdl-36732619

ABSTRACT

Protein S-persulfidation (P-SSH) is recognized as a common posttranslational modification. It occurs under basal conditions and is often observed to be elevated under stress conditions. However, the mechanism(s) by which proteins are persulfidated inside cells have remained unclear. Here we report that 3-mercaptopyruvate sulfur transferase (MPST) engages in direct protein-to-protein transpersulfidation reactions beyond its previously known protein substrates thioredoxin and MOCS3/Uba4, associated with H2S generation and transfer RNA thiolation, respectively. We observe that depletion of MPST in human cells lowers overall intracellular protein persulfidation levels and identify a subset of proteins whose persulfidation depends on MPST. The predicted involvement of these proteins in the adaptation to stress responses supports the notion that MPST-dependent protein persulfidation promotes cytoprotective functions. The observation of MPST-independent protein persulfidation suggests that other protein persulfidases remain to be identified.


Subject(s)
Sulfurtransferases , Humans , Cysteine , Hydrogen Sulfide/metabolism , Sulfur/metabolism
6.
Nucleic Acids Res ; 51(15): 8133-8149, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37462076

ABSTRACT

Fungal pathogens threaten ecosystems and human health. Understanding the molecular basis of their virulence is key to develop new treatment strategies. Here, we characterize NCS2*, a point mutation identified in a clinical baker's yeast isolate. Ncs2 is essential for 2-thiolation of tRNA and the NCS2* mutation leads to increased thiolation at body temperature. NCS2* yeast exhibits enhanced fitness when grown at elevated temperatures or when exposed to oxidative stress, inhibition of nutrient signalling, and cell-wall stress. Importantly, Ncs2* alters the interaction and stability of the thiolase complex likely mediated by nucleotide binding. The absence of 2-thiolation abrogates the in vivo virulence of pathogenic baker's yeast in infected mice. Finally, hypomodification triggers changes in colony morphology and hyphae formation in the common commensal pathogen Candida albicans resulting in decreased virulence in a human cell culture model. These findings demonstrate that 2-thiolation of tRNA acts as a key mediator of fungal virulence and reveal new mechanistic insights into the function of the highly conserved tRNA-thiolase complex.


Subject(s)
RNA, Transfer , Saccharomyces cerevisiae , Animals , Humans , Mice , Candida albicans/metabolism , Ecosystem , Fungal Proteins/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/pathogenicity , Sulfur/metabolism , Virulence/genetics
7.
Nucleic Acids Res ; 51(5): 2011-2032, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36617428

ABSTRACT

Transfer RNA (tRNA) molecules are essential to decode messenger RNA codons during protein synthesis. All known tRNAs are heavily modified at multiple positions through post-transcriptional addition of chemical groups. Modifications in the tRNA anticodons are directly influencing ribosome decoding and dynamics during translation elongation and are crucial for maintaining proteome integrity. In eukaryotes, wobble uridines are modified by Elongator, a large and highly conserved macromolecular complex. Elongator consists of two subcomplexes, namely Elp123 containing the enzymatically active Elp3 subunit and the associated Elp456 hetero-hexamer. The structure of the fully assembled complex and the function of the Elp456 subcomplex have remained elusive. Here, we show the cryo-electron microscopy structure of yeast Elongator at an overall resolution of 4.3 Å. We validate the obtained structure by complementary mutational analyses in vitro and in vivo. In addition, we determined various structures of the murine Elongator complex, including the fully assembled mouse Elongator complex at 5.9 Å resolution. Our results confirm the structural conservation of Elongator and its intermediates among eukaryotes. Furthermore, we complement our analyses with the biochemical characterization of the assembled human Elongator. Our results provide the molecular basis for the assembly of Elongator and its tRNA modification activity in eukaryotes.


The multi-subunit Elongator complex mediates the addition of a carboxymethyl group to wobble uridines in eukaryotic tRNAs. This tRNA modification is crucial to preserve the integrity of cellular proteomes and to protects us against severe neurodegenerative diseases. Elongator is organized in two distinct modules (i) the larger Elp123 subcomplex that binds and modifies the suitable tRNA substrate and (ii) the smaller Elp456 subcomplex that assists the release of the modified tRNA. The presented cryo-EM structures of Elongator show that the assemblies are very dynamic and undergo conformational rearrangements at consecutive steps of the process. Last but not least, the study provides a detailed reaction scheme and shows that the architecture of Elongator is highly conserved from yeast to mammals.


Subject(s)
Multiprotein Complexes , Peptide Chain Elongation, Translational , RNA-Binding Proteins , Saccharomyces cerevisiae , Animals , Humans , Mice , Cryoelectron Microscopy , Histone Acetyltransferases/metabolism , Protein Binding , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure
8.
J Biol Chem ; 299(8): 104966, 2023 08.
Article in English | MEDLINE | ID: mdl-37380076

ABSTRACT

tRNAs are short noncoding RNAs responsible for decoding mRNA codon triplets, delivering correct amino acids to the ribosome, and mediating polypeptide chain formation. Due to their key roles during translation, tRNAs have a highly conserved shape and large sets of tRNAs are present in all living organisms. Regardless of sequence variability, all tRNAs fold into a relatively rigid three-dimensional L-shaped structure. The conserved tertiary organization of canonical tRNA arises through the formation of two orthogonal helices, consisting of the acceptor and anticodon domains. Both elements fold independently to stabilize the overall structure of tRNAs through intramolecular interactions between the D- and T-arm. During tRNA maturation, different modifying enzymes posttranscriptionally attach chemical groups to specific nucleotides, which not only affect translation elongation rates but also restrict local folding processes and confer local flexibility when required. The characteristic structural features of tRNAs are also employed by various maturation factors and modification enzymes to assure the selection, recognition, and positioning of specific sites within the substrate tRNAs. The cellular functional repertoire of tRNAs continues to extend well beyond their role in translation, partly, due to the expanding pool of tRNA-derived fragments. Here, we aim to summarize the most recent developments in the field to understand how three-dimensional structure affects the canonical and noncanonical functions of tRNA.


Subject(s)
Anticodon , RNA, Transfer , Nucleic Acid Conformation , RNA, Transfer/genetics , RNA, Transfer/metabolism , Anticodon/metabolism , Protein Biosynthesis , Ribosomes/metabolism
9.
EMBO J ; 39(19): e105087, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32901956

ABSTRACT

The chemical modification of tRNA bases by sulfur is crucial to tune translation and to optimize protein synthesis. In eukaryotes, the ubiquitin-related modifier 1 (Urm1) pathway is responsible for the synthesis of 2-thiolated wobble uridine (U34 ). During the key step of the modification cascade, the E1-like activating enzyme ubiquitin-like protein activator 4 (Uba4) first adenylates and thiocarboxylates the C-terminus of its substrate Urm1. Subsequently, activated thiocarboxylated Urm1 (Urm1-COSH) can serve as a sulfur donor for specific tRNA thiolases or participate in ubiquitin-like conjugation reactions. Structural and mechanistic details of Uba4 and Urm1 have remained elusive but are key to understand the evolutionary branch point between ubiquitin-like proteins (UBL) and sulfur-relay systems. Here, we report the crystal structures of full-length Uba4 and its heterodimeric complex with its substrate Urm1. We show how the two domains of Uba4 orchestrate recognition, binding, and thiocarboxylation of the C-terminus of Urm1. Finally, we uncover how the catalytic domains of Uba4 communicate efficiently during the reaction cycle and identify a mechanism that enables Uba4 to protect itself against self-conjugation with its own product, namely activated Urm1-COSH.


Subject(s)
Nucleotidyltransferases/chemistry , RNA, Transfer/chemistry , Sulfur/chemistry , Sulfurtransferases/chemistry , Ubiquitins/chemistry , Humans , Nucleotidyltransferases/metabolism , RNA, Transfer/metabolism , Sulfur/metabolism , Sulfurtransferases/metabolism , Ubiquitins/metabolism
10.
J Hum Genet ; 68(7): 445-453, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36864284

ABSTRACT

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous, debilitating conditions that include motor and cognitive disability and social deficits. The genetic factors underlying the complex phenotype of NDDs remain to be elucidated. Accumulating evidence suggest that the Elongator complex plays a role in NDDs, given that patient-derived mutations in its ELP2, ELP3, ELP4 and ELP6 subunits have been associated with these disorders. Pathogenic variants in its largest subunit ELP1 have been previously found in familial dysautonomia and medulloblastoma, with no link to NDDs affecting primarily the central nervous system. METHODS: Clinical investigation included patient history and physical, neurological and magnetic resonance imaging (MRI) examination. A novel homozygous likely pathogenic ELP1 variant was identified by whole-genome sequencing. Functional studies included in silico analysis of the mutated ELP1 in the context of the holo-complex, production and purification of the ELP1 harbouring the identified mutation and in vitro analyses using microscale thermophoresis for tRNA binding assay and acetyl-CoA hydrolysis assay. Patient fibroblasts were harvested for tRNA modification analysis using HPLC coupled to mass spectrometry. RESULTS: We report a novel missense mutation in the ELP1 identified in two siblings with intellectual disability and global developmental delay. We show that the mutation perturbs the ability of ELP123 to bind tRNAs and compromises the function of the Elongator in vitro and in human cells. CONCLUSION: Our study expands the mutational spectrum of ELP1 and its association with different neurodevelopmental conditions and provides a specific target for genetic counselling.


Subject(s)
Mutation, Missense , Neurodevelopmental Disorders , Transcriptional Elongation Factors , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mutation , Nerve Tissue Proteins/genetics , Phenotype , RNA, Transfer/metabolism , Transcriptional Elongation Factors/genetics , Neurodevelopmental Disorders/genetics
11.
Hum Mutat ; 43(12): 2063-2078, 2022 12.
Article in English | MEDLINE | ID: mdl-36125428

ABSTRACT

Pseudouridine (Ψ) is an RNA base modification ubiquitously found in many types of RNAs. In humans, the isomerization of uridine is catalyzed by different stand-alone pseudouridine synthases (PUS). Genomic mutations in the human pseudouridine synthase 3 gene (PUS3) have been identified in patients with neurodevelopmental disorders. However, the underlying molecular mechanisms that cause the disease phenotypes remain elusive. Here, we utilize exome sequencing to identify genomic variants that lead to a homozygous amino acid substitution (p.[(Tyr71Cys)];[(Tyr71Cys)]) in human PUS3 of two affected individuals and a compound heterozygous substitution (p.[(Tyr71Cys)];[(Ile299Thr)]) in a third patient. We obtain wild-type and mutated full-length human recombinant PUS3 proteins and characterize the enzymatic activity in vitro. Unexpectedly, we find that the p.Tyr71Cys substitution neither affect tRNA binding nor pseudouridylation activity in vitro, but strongly impair the thermostability profile of PUS3, while the p.Ile299Thr mutation causes protein aggregation. Concomitantly, we observe that the PUS3 protein levels as well as the level of PUS3-dependent Ψ levels are strongly reduced in fibroblasts derived from all three patients. In summary, our results directly illustrate the link between the identified PUS3 variants and reduced Ψ levels in the patient cells, providing a molecular explanation for the observed clinical phenotypes.


Subject(s)
Hydro-Lyases , Intellectual Disability , Pseudouridine , Humans , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Intellectual Disability/genetics , Pseudouridine/genetics , Pseudouridine/metabolism , RNA Processing, Post-Transcriptional
12.
Nature ; 528(7581): 231-6, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26605533

ABSTRACT

Transcription of genes encoding small structured RNAs such as transfer RNAs, spliceosomal U6 small nuclear RNA and ribosomal 5S RNA is carried out by RNA polymerase III (Pol III), the largest yet structurally least characterized eukaryotic RNA polymerase. Here we present the cryo-electron microscopy structures of the Saccharomyces cerevisiae Pol III elongating complex at 3.9 Å resolution and the apo Pol III enzyme in two different conformations at 4.6 and 4.7 Å resolution, respectively, which allow the building of a 17-subunit atomic model of Pol III. The reconstructions reveal the precise orientation of the C82-C34-C31 heterotrimer in close proximity to the stalk. The C53-C37 heterodimer positions residues involved in transcription termination close to the non-template DNA strand. In the apo Pol III structures, the stalk adopts different orientations coupled with closed and open conformations of the clamp. Our results provide novel insights into Pol III-specific transcription and the adaptation of Pol III towards its small transcriptional targets.


Subject(s)
Models, Molecular , RNA Polymerase III/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Cryoelectron Microscopy , Protein Binding , Protein Structure, Tertiary
13.
Nucleic Acids Res ; 47(9): 4814-4830, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30916349

ABSTRACT

Posttranscriptional RNA modifications occur in all domains of life. Modifications of anticodon bases are of particular importance for ribosomal decoding and proteome homeostasis. The Elongator complex modifies uridines in the wobble position and is highly conserved in eukaryotes. Despite recent insights into Elongator's architecture, the structure and function of its regulatory factor Kti12 have remained elusive. Here, we present the crystal structure of Kti12's nucleotide hydrolase domain trapped in a transition state of ATP hydrolysis. The structure reveals striking similarities to an O-phosphoseryl-tRNA kinase involved in the selenocysteine pathway. Both proteins employ similar mechanisms of tRNA binding and show tRNASec-dependent ATPase activity. In addition, we demonstrate that Kti12 binds directly to Elongator and that ATP hydrolysis is crucial for Elongator to maintain proper tRNA anticodon modification levels in vivo. In summary, our data reveal a hitherto uncharacterized link between two translational control pathways that regulate selenocysteine incorporation and affect ribosomal tRNA selection via specific tRNA modifications.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adenosine Triphosphatases/genetics , RNA Processing, Post-Transcriptional/genetics , Saccharomyces cerevisiae Proteins/genetics , Adaptor Proteins, Signal Transducing/chemistry , Adenosine Triphosphatases/chemistry , Anticodon/genetics , Carrier Proteins/chemistry , Carrier Proteins/genetics , Chaetomium/chemistry , Chaetomium/enzymology , Crystallography, X-Ray , Protein Conformation , RNA, Transfer/genetics , Ribosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Uridine/genetics
14.
Genes Dev ; 27(21): 2367-79, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24186981

ABSTRACT

Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.


Subject(s)
Drosophila Proteins/chemistry , Drosophila melanogaster , Gene Expression Regulation, Developmental , Models, Molecular , Polycomb-Group Proteins/metabolism , Amino Acid Sequence , Animals , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/chemistry , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans , Molecular Sequence Data , Mutation/genetics , Polycomb-Group Proteins/chemistry , Polycomb-Group Proteins/genetics , Protein Binding , Protein Stability , Protein Structure, Quaternary , Protein Structure, Tertiary , Sequence Alignment , YY1 Transcription Factor/chemistry , YY1 Transcription Factor/metabolism
15.
Curr Genet ; 66(4): 823-833, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32236652

ABSTRACT

Kti12 (Kluyveromyces lactis toxin insensitive 12) is an evolutionary highly conserved ATPase, crucial for the tRNA-modification activity of the eukaryotic Elongator complex. The protein consists of an N-terminal ATPase and a C-terminal tRNA-binding domain, which are connected by a flexible linker. The precise role of the linker region and its involvement in the communication between the two domains and their activities remain elusive. Here, we analyzed all available Kti12 protein sequences and report the discovery of a subset of Kti12 proteins with abnormally long linker regions. These Kti12 proteins are characterized by a co-occurring lysine to leucine substitution in their Walker A motif, previously thought to be invariable. We show that the K14L substitution lowers the affinity to ATP, but does not affect the catalytic activity of Kti12 at high ATP concentrations. We compare the activity of mutated variants of Kti12 in vitro with complementation assays in vivo in yeast. Ultimately, we compared Kti12 to other known p-loop ATPase family members known to carry a similar deviant Walker A motif. Our data establish Kti12 of Eurotiomycetes as an example of eukaryotic ATPase harboring a significantly deviating but still functional Walker A motif.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/metabolism , Saccharomyces cerevisiae/metabolism , AAA Domain , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Substitution , Animals , Catalytic Domain , Evolution, Molecular , Fungal Proteins/genetics , Killer Factors, Yeast/pharmacology , Kluyveromyces/metabolism , Lysine/chemistry , Machine Learning , Models, Molecular , Mutation , Protein Conformation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
16.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33152999

ABSTRACT

Elp3, the catalytic subunit of the eukaryotic Elongator complex, is a lysine acetyltransferase that acetylates the C5 position of wobble-base uridines (U34) in transfer RNAs (tRNAs). This Elongator-dependent RNA acetylation of anticodon bases affects the ribosomal translation elongation rates and directly links acetyl-CoA metabolism to both protein synthesis rates and the proteome integrity. Of note, several human diseases, including various cancers and neurodegenerative disorders, correlate with the dysregulation of Elongator's tRNA modification activity. In this review, we focus on recent findings regarding the structure of Elp3 and the role of acetyl-CoA during its unique modification reaction.


Subject(s)
Histone Acetyltransferases/metabolism , RNA Processing, Post-Transcriptional , RNA, Transfer/metabolism , Acetylation , Animals , Base Sequence , Binding Sites , Histone Acetyltransferases/physiology , Humans , Lysine/metabolism , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/physiology , Peptide Chain Elongation, Translational/genetics , Uridine/metabolism
17.
EMBO Rep ; 18(2): 264-279, 2017 02.
Article in English | MEDLINE | ID: mdl-27974378

ABSTRACT

The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1-6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub-complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two-lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.


Subject(s)
Fungal Proteins/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Multiprotein Complexes/metabolism , Multiprotein Complexes/ultrastructure , Mutation , Protein Binding , Protein Conformation , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship
18.
J Biol Chem ; 288(21): 15110-20, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23569204

ABSTRACT

Saccharomyces cerevisiae τ55, a subunit of the RNA polymerase III-specific general transcription factor TFIIIC, comprises an N-terminal histidine phosphatase domain (τ55-HPD) whose catalytic activity and cellular function is poorly understood. We solved the crystal structures of τ55-HPD and its closely related paralogue Huf and used in silico docking methods to identify phosphoserine- and phosphotyrosine-containing peptides as possible substrates that were subsequently validated using in vitro phosphatase assays. A comparative phosphoproteomic study identified additional phosphopeptides as possible targets that show the involvement of these two phosphatases in the regulation of a variety of cellular functions. Our results identify τ55-HPD and Huf as bona fide protein phosphatases, characterize their substrate specificities, and provide a small set of regulated phosphosite targets in vivo.


Subject(s)
Phosphoric Monoester Hydrolases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Transcription Factors, TFIII/chemistry , Crystallography, X-Ray , Molecular Docking Simulation , Phosphoric Monoester Hydrolases/genetics , Protein Structure, Tertiary , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Factors, TFIII/genetics
19.
Structure ; 32(3): 260-262, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38458158

ABSTRACT

In this issue of Structure, Sievers et al.1 gain important insights into the human tRNA guanine transglycosylase QTRT1/2. The study presents a cryo-EM reconstruction of the inhibited human heterodimer in complex with human tRNAAsp, which represents the first snapshot of a eukaryotic TGT in complex with its full-length tRNA substrate.


Subject(s)
RNA, Transfer , Humans
20.
Nat Commun ; 15(1): 4094, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750017

ABSTRACT

tRNA modifications affect ribosomal elongation speed and co-translational folding dynamics. The Elongator complex is responsible for introducing 5-carboxymethyl at wobble uridine bases (cm5U34) in eukaryotic tRNAs. However, the structure and function of human Elongator remain poorly understood. In this study, we present a series of cryo-EM structures of human ELP123 in complex with tRNA and cofactors at four different stages of the reaction. The structures at resolutions of up to 2.9 Å together with complementary functional analyses reveal the molecular mechanism of the modification reaction. Our results show that tRNA binding exposes a universally conserved uridine at position 33 (U33), which triggers acetyl-CoA hydrolysis. We identify a series of conserved residues that are crucial for the radical-based acetylation of U34 and profile the molecular effects of patient-derived mutations. Together, we provide the high-resolution view of human Elongator and reveal its detailed mechanism of action.


Subject(s)
Cryoelectron Microscopy , RNA, Transfer , Humans , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Uridine/chemistry , Uridine/metabolism , Mutation , Acetyl Coenzyme A/metabolism , Acetyl Coenzyme A/chemistry , Models, Molecular , Acetylation , Histone Acetyltransferases/metabolism , Histone Acetyltransferases/chemistry , Histone Acetyltransferases/genetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL