Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters

Publication year range
1.
Nature ; 478(7367): 103-9, 2011 Sep 11.
Article in English | MEDLINE | ID: mdl-21909115

ABSTRACT

Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention.


Subject(s)
Blood Pressure/genetics , Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Africa/ethnology , Asia/ethnology , Blood Pressure/physiology , Coronary Artery Disease/genetics , Europe/ethnology , Genome-Wide Association Study , Humans , Hypertension/genetics , Kidney Diseases/genetics , Stroke/genetics
2.
Nature ; 467(7317): 832-8, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20881960

ABSTRACT

Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.


Subject(s)
Body Height/genetics , Genetic Loci/genetics , Genome, Human/genetics , Metabolic Networks and Pathways/genetics , Polymorphism, Single Nucleotide/genetics , Chromosomes, Human, Pair 3/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Multifactorial Inheritance/genetics , Phenotype
3.
Hum Mol Genet ; 22(10): 2119-27, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23314186

ABSTRACT

With white blood cell count emerging as an important risk factor for chronic inflammatory diseases, genetic associations of differential leukocyte types, specifically monocyte count, are providing novel candidate genes and pathways to further investigate. Circulating monocytes play a critical role in vascular diseases such as in the formation of atherosclerotic plaque. We performed a joint and ancestry-stratified genome-wide association analyses to identify variants specifically associated with monocyte count in 11 014 subjects in the electronic Medical Records and Genomics Network. In the joint and European ancestry samples, we identified novel associations in the chromosome 16 interferon regulatory factor 8 (IRF8) gene (P-value = 2.78×10(-16), ß = -0.22). Other monocyte associations include novel missense variants in the chemokine-binding protein 2 (CCBP2) gene (P-value = 1.88×10(-7), ß = 0.30) and a region of replication found in ribophorin I (RPN1) (P-value = 2.63×10(-16), ß = -0.23) on chromosome 3. The CCBP2 and RPN1 region is located near GATA binding protein2 gene that has been previously shown to be associated with coronary heart disease. On chromosome 9, we found a novel association in the prostaglandin reductase 1 gene (P-value = 2.29×10(-7), ß = 0.16), which is downstream from lysophosphatidic acid receptor 1. This region has previously been shown to be associated with monocyte count. We also replicated monocyte associations of genome-wide significance (P-value = 5.68×10(-17), ß = -0.23) at the integrin, alpha 4 gene on chromosome 2. The novel IRF8 results and further replications provide supporting evidence of genetic regions associated with monocyte count.


Subject(s)
Atherosclerosis/blood , Atherosclerosis/genetics , Chromosomes, Human/genetics , Genome-Wide Association Study , Leukocyte Count , Adult , Aged , Chromosomes, Human/metabolism , Female , GATA2 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , Humans , Integrin alpha4/genetics , Integrin alpha4/metabolism , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Middle Aged , Monocytes , Mutation, Missense , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Receptors, Lysophosphatidic Acid/genetics , Receptors, Lysophosphatidic Acid/metabolism
4.
Am J Hum Genet ; 91(4): 744-53, 2012 Oct 05.
Article in English | MEDLINE | ID: mdl-23022100

ABSTRACT

Many disorders are associated with altered serum protein concentrations, including malnutrition, cancer, and cardiovascular, kidney, and inflammatory diseases. Although these protein concentrations are highly heritable, relatively little is known about their underlying genetic determinants. Through transethnic meta-analysis of European-ancestry and Japanese genome-wide association studies, we identified six loci at genome-wide significance (p < 5 × 10(-8)) for serum albumin (HPN-SCN1B, GCKR-FNDC4, SERPINF2-WDR81, TNFRSF11A-ZCCHC2, FRMD5-WDR76, and RPS11-FCGRT, in up to 53,190 European-ancestry and 9,380 Japanese individuals) and three loci for total protein (TNFRS13B, 6q21.3, and ELL2, in up to 25,539 European-ancestry and 10,168 Japanese individuals). We observed little evidence of heterogeneity in allelic effects at these loci between groups of European and Japanese ancestry but obtained substantial improvements in the resolution of fine mapping of potential causal variants by leveraging transethnic differences in the distribution of linkage disequilibrium. We demonstrated a functional role for the most strongly associated serum albumin locus, HPN, for which Hpn knockout mice manifest low plasma albumin concentrations. Other loci associated with serum albumin harbor genes related to ribosome function, protein translation, and proteasomal degradation, whereas those associated with serum total protein include genes related to immune function. Our results highlight the advantages of transethnic meta-analysis for the discovery and fine mapping of complex trait loci and have provided initial insights into the underlying genetic architecture of serum protein concentrations and their association with human disease.


Subject(s)
Blood Proteins/genetics , Blood Proteins/metabolism , Genetic Loci , Genetic Predisposition to Disease/genetics , Adult , Aged , Alleles , Animals , Asian People/genetics , Chromosome Mapping/methods , Female , Genome-Wide Association Study/methods , Humans , Linkage Disequilibrium/genetics , Male , Mice , Middle Aged , Protein Biosynthesis/genetics , Proteolysis , Ribosomes/genetics , Serum Albumin/genetics , White People/genetics
5.
Genet Epidemiol ; 37(5): 512-521, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23650146

ABSTRACT

Venous thromboembolism (VTE) is a common, heritable disease resulting in high rates of hospitalization and mortality. Yet few associations between VTE and genetic variants, all in the coagulation pathway, have been established. To identify additional genetic determinants of VTE, we conducted a two-stage genome-wide association study (GWAS) among individuals of European ancestry in the extended cohorts for heart and aging research in genomic epidemiology (CHARGE) VTE consortium. The discovery GWAS comprised 1,618 incident VTE cases out of 44,499 participants from six community-based studies. Genotypes for genome-wide single-nucleotide polymorphisms (SNPs) were imputed to approximately 2.5 million SNPs in HapMap and association with VTE assessed using study-design appropriate regression methods. Meta-analysis of these results identified two known loci, in F5 and ABO. Top 1,047 tag SNPs (P ≤ 0.0016) from the discovery GWAS were tested for association in an additional 3,231 cases and 3,536 controls from three case-control studies. In the combined data from these two stages, additional genome-wide significant associations were observed on 4q35 at F11 (top SNP rs4253399, intronic to F11) and on 4q28 at FGG (rs6536024, 9.7 kb from FGG; P < 5.0 × 10(-13) for both). The associations at the FGG locus were not completely explained by previously reported variants. Loci at or near SUSD1 and OTUD7A showed borderline yet novel associations (P < 5.0 × 10(-6) ) and constitute new candidate genes. In conclusion, this large GWAS replicated key genetic associations in F5 and ABO, and confirmed the importance of F11 and FGG loci for VTE. Future studies are warranted to better characterize the associations with F11 and FGG and to replicate the new candidate associations.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Venous Thromboembolism/genetics , Aged , Aging , Case-Control Studies , Cohort Studies , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Regression Analysis , Risk Factors , Venous Thromboembolism/epidemiology
6.
Am J Epidemiol ; 179(11): 1331-9, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24771724

ABSTRACT

Fibrosis has been implicated in diverse diseases of the liver, kidney, lungs, and heart, but its importance as a risk factor for mortality remains unconfirmed. We determined the prospective associations of 2 complementary biomarkers of fibrosis, transforming growth factor-ß (TGF-ß) and procollagen type III N-terminal propeptide (PIIINP), with total and cause-specific mortality risks among community-living older adults in the Cardiovascular Health Study (1996-2010). We measured circulating TGF-ß and PIIINP levels in plasma samples collected in 1996 and ascertained the number of deaths through 2010. Both TGF-ß and PIIINP were associated with elevated risks of total and pulmonary mortality after adjustment for sociodemographic, clinical, and biochemical risk factors. For total mortality, the hazard ratios per doubling of TGF-ß and PIIINP were 1.09 (95% confidence interval (CI): 1.01, 1.17; P = 0.02) and 1.14 (CI: 1.03, 1.27; P = 0.01), respectively. The corresponding hazard ratios for pulmonary mortality were 1.27 (CI: 1.01, 1.60; P = 0.04) for TGF-ß and 1.52 (CI: 1.11, 2.10; P = 0.01) for PIIINP. Associations of TGF-ß and PIIINP with total and pulmonary mortality were strongest among individuals with higher C-reactive protein concentrations (P for interaction < 0.05). Our findings provide some of the first large-scale prospective evidence that circulating biomarkers of fibrosis measured late in life are associated with death.


Subject(s)
Cause of Death , Fibrosis/mortality , Peptide Fragments/blood , Procollagen/blood , Transforming Growth Factor beta/blood , Aged , Aged, 80 and over , Biomarkers/blood , Female , Fibrosis/blood , Follow-Up Studies , Humans , Likelihood Functions , Male , Multivariate Analysis , Proportional Hazards Models , Prospective Studies , Risk Factors
7.
Am Heart J ; 167(5): 723-8.e2, 2014 May.
Article in English | MEDLINE | ID: mdl-24766983

ABSTRACT

BACKGROUND: Cardiac fibrosis is thought to play a central role in the pathogenesis of atrial fibrillation (AF). Retrospective studies have suggested that circulating fibrosis biomarkers are associated with AF, but prospective studies are limited. METHODS: We measured circulating levels of 2 fibrosis biomarkers, procollagen type III, N-terminal propeptide (PIIINP) and transforming growth factor ß1 among participants of the CHS, a population-based study of older Americans. We used Cox proportional hazards and competing risks models to examine adjusted risk of incident AF over a median follow-up of 8.8 years. RESULTS: Levels of PIIINP were assessed in 2,935 participants, of whom 767 developed AF. Compared with the median PIIINP level (4.45 µg/L), adjusted hazard ratios (95% CIs) were 0.85 (0.72-1.00) at the 10th percentile, 0.93 (0.88-0.99) at the 25th percentile, 1.04 (0.95-1.04) at the 75th percentile, and 1.07 (0.90-1.26) at the 90th. Transforming growth factor ß1 levels, assessed in 1,538 participants with 408 cases of incident AF, were not associated with AF risk. CONCLUSION: In older adults, PIIINP levels were associated with risk of incident AF in a complex manner, with an association that appeared to be positive up to median levels but with little relationship beyond that. Further studies are required to confirm and possibly delineate the mechanism for this relationship.


Subject(s)
Atrial Fibrillation/blood , Cardiomyopathies/blood , Peptide Fragments/blood , Procollagen/blood , Transforming Growth Factor beta1/blood , Aged , Atrial Fibrillation/epidemiology , Atrial Fibrillation/etiology , Biomarkers/blood , Cardiomyopathies/complications , Cardiomyopathies/epidemiology , Electrocardiography , Enzyme-Linked Immunosorbent Assay , Female , Fibrosis/blood , Fibrosis/complications , Fibrosis/epidemiology , Follow-Up Studies , Humans , Incidence , Male , Prospective Studies , Risk Factors , Time Factors , United States/epidemiology
8.
PLoS Genet ; 7(6): e1002113, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21738480

ABSTRACT

White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds.


Subject(s)
Genetic Loci/genetics , Leukocyte Count , Leukocytes , Phenotype , Genome-Wide Association Study , Humans , Molecular Epidemiology , Multigene Family/genetics , Polymorphism, Single Nucleotide/genetics , Ubiquitin-Protein Ligases/genetics
9.
Hum Mol Genet ; 20(6): 1241-51, 2011 Mar 15.
Article in English | MEDLINE | ID: mdl-21216879

ABSTRACT

Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein-3 (IGFBP-3) are involved in cell replication, proliferation, differentiation, protein synthesis, carbohydrate homeostasis and bone metabolism. Circulating IGF-I and IGFBP-3 concentrations predict anthropometric traits and risk of cancer and cardiovascular disease. In a genome-wide association study of 10 280 middle-aged and older men and women from four community-based cohort studies, we confirmed a known association of single nucleotide polymorphisms in the IGFBP3 gene region on chromosome 7p12.3 with IGFBP-3 concentrations using a significance threshold of P < 5 × 10(-8) (P = 3.3 × 10(-101)). Furthermore, the same IGFBP3 gene locus (e.g. rs11977526) that was associated with IGFBP-3 concentrations was also associated with the opposite direction of effect, with IGF-I concentration after adjustment for IGFBP-3 concentration (P = 1.9 × 10(-26)). A novel and independent locus on chromosome 7p12.3 (rs700752) had genome-wide significant associations with higher IGFBP-3 (P = 4.4 × 10(-21)) and higher IGF-I (P = 4.9 × 10(-9)) concentrations; when the two measurements were adjusted for one another, the IGF-I association was attenuated but the IGFBP-3 association was not. Two additional loci demonstrated genome-wide significant associations with IGFBP-3 concentration (rs1065656, chromosome 16p13.3, P = 1.2 × 10(-11), IGFALS, a confirmatory finding; and rs4234798, chromosome 4p16.1, P = 4.5 × 10(-10), SORCS2, a novel finding). Together, the four genome-wide significant loci explained 6.5% of the population variation in IGFBP-3 concentration. Furthermore, we observed a borderline statistically significant association between IGF-I concentration and FOXO3 (rs2153960, chromosome 6q21, P = 5.1 × 10(-7)), a locus associated with longevity. These genetic loci deserve further investigation to elucidate the biological basis for the observed associations and clarify their possible role in IGF-mediated regulation of cell growth and metabolism.


Subject(s)
Genome-Wide Association Study , Insulin-Like Growth Factor Binding Protein 3/blood , Insulin-Like Growth Factor Binding Protein 3/genetics , Insulin-Like Growth Factor I/metabolism , Aged , Chromosomes, Human, Pair 7/genetics , Cohort Studies , Female , Humans , Insulin-Like Growth Factor I/genetics , Male , Polymorphism, Single Nucleotide , White People/genetics
10.
Blood ; 117(22): 6007-11, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21163921

ABSTRACT

In a recent genome-wide association study, variants in 8 genes were associated with VWF level, a risk factor for venous thrombosis (VT). In an independent, population-based, case-control study of incident VT, we tested hypotheses that variants in these genes would be associated with risk. Cases were 656 women who experienced an incident VT, and controls comprised 710 women without a history of VT. DNA was obtained from whole blood. Logistic regression was used to test associations between incident VT and single nucleotide polymorphisms (SNPs) in 7 genes not previously shown to be associated with VT. Associations with P < .05 were candidates for replication in an independent case-control study of VT in both sexes. Two of the 7 SNPs tested yielded P < .05: rs1039084 (P = .005) in STXBP5, a novel candidate gene for VT, and rs1063856 (P = .04) in VWF, a gene whose protein level is associated with VT risk. Association results for the remaining 5 variants in SCARA5, STAB2, STX2, TC2N, and CLEC4M were not significant. Both STXBP5 and VWF findings were replicated successfully. Variation in genes associated with VWF levels in the genome-wide association study was found to be independently associated with incident VT.


Subject(s)
Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide/genetics , R-SNARE Proteins/genetics , Venous Thrombosis/epidemiology , Venous Thrombosis/etiology , von Willebrand Factor/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Risk Factors
11.
Proc Natl Acad Sci U S A ; 107(20): 9293-8, 2010 May 18.
Article in English | MEDLINE | ID: mdl-20421499

ABSTRACT

Telomeres are engaged in a host of cellular functions, and their length is regulated by multiple genes. Telomere shortening, in the course of somatic cell replication, ultimately leads to replicative senescence. In humans, rare mutations in genes that regulate telomere length have been identified in monogenic diseases such as dyskeratosis congenita and idiopathic pulmonary fibrosis, which are associated with shortened leukocyte telomere length (LTL) and increased risk for aplastic anemia. Shortened LTL is observed in a host of aging-related complex genetic diseases and is associated with diminished survival in the elderly. We report results of a genome-wide association study of LTL in a consortium of four observational studies (n = 3,417 participants with LTL and genome-wide genotyping). SNPs in the regions of the oligonucleotide/oligosaccharide-binding folds containing one gene (OBFC1; rs4387287; P = 3.9 x 10(-9)) and chemokine (C-X-C motif) receptor 4 gene (CXCR4; rs4452212; P = 2.9 x 10(-8)) were associated with LTL at a genome-wide significance level (P < 5 x 10(-8)). We attempted replication of the top SNPs at these loci through de novo genotyping of 1,893 additional individuals and in silico lookup in another observational study (n = 2,876), and we confirmed the association findings for OBFC1 but not CXCR4. In addition, we confirmed the telomerase RNA component (TERC) as a gene associated with LTL (P = 1.1 x 10(-5)). The identification of OBFC1 through genome-wide association as a locus for interindividual variation in LTL in the general population advances the understanding of telomere biology in humans and may provide insights into aging-related disorders linked to altered LTL dynamics.


Subject(s)
Leukocytes/physiology , Receptors, CXCR4/physiology , Telomere-Binding Proteins/physiology , Telomere/physiology , Cohort Studies , Genome-Wide Association Study , Genotype , Humans , Leukocytes/chemistry , Polymorphism, Single Nucleotide/genetics , Receptors, CXCR4/genetics , Telomere/genetics , Telomere-Binding Proteins/genetics
12.
PLoS Genet ; 6(10): e1001184, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060863

ABSTRACT

There is increasing evidence that the microcirculation plays an important role in the pathogenesis of cardiovascular diseases. Changes in retinal vascular caliber reflect early microvascular disease and predict incident cardiovascular events. We performed a genome-wide association study to identify genetic variants associated with retinal vascular caliber. We analyzed data from four population-based discovery cohorts with 15,358 unrelated Caucasian individuals, who are members of the Cohort for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and replicated findings in four independent Caucasian cohorts (n  =  6,652). All participants had retinal photography and retinal arteriolar and venular caliber measured from computer software. In the discovery cohorts, 179 single nucleotide polymorphisms (SNP) spread across five loci were significantly associated (p<5.0×10(-8)) with retinal venular caliber, but none showed association with arteriolar caliber. Collectively, these five loci explain 1.0%-3.2% of the variation in retinal venular caliber. Four out of these five loci were confirmed in independent replication samples. In the combined analyses, the top SNPs at each locus were: rs2287921 (19q13; p  =  1.61×10(-25), within the RASIP1 locus), rs225717 (6q24; p = 1.25×10(-16), adjacent to the VTA1 and NMBR loci), rs10774625 (12q24; p  =  2.15×10(-13), in the region of ATXN2,SH2B3 and PTPN11 loci), and rs17421627 (5q14; p = 7.32×10(-16), adjacent to the MEF2C locus). In two independent samples, locus 12q24 was also associated with coronary heart disease and hypertension. Our population-based genome-wide association study demonstrates four novel loci associated with retinal venular caliber, an endophenotype of the microcirculation associated with clinical cardiovascular disease. These data provide further insights into the contribution and biological mechanisms of microcirculatory changes that underlie cardiovascular disease.


Subject(s)
Genetic Loci/genetics , Genome-Wide Association Study/methods , Microcirculation , Polymorphism, Single Nucleotide , Adolescent , Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Child , Child, Preschool , Chromosomes, Human, Pair 12 , Chromosomes, Human, Pair 19 , Chromosomes, Human, Pair 5 , Chromosomes, Human, Pair 6 , Cohort Studies , Female , Humans , Male , Meta-Analysis as Topic , Middle Aged , Retinal Vessels/physiopathology , White People/genetics , Young Adult
13.
PLoS Genet ; 6(8)2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20700443

ABSTRACT

Magnesium, potassium, and sodium, cations commonly measured in serum, are involved in many physiological processes including energy metabolism, nerve and muscle function, signal transduction, and fluid and blood pressure regulation. To evaluate the contribution of common genetic variation to normal physiologic variation in serum concentrations of these cations, we conducted genome-wide association studies of serum magnesium, potassium, and sodium concentrations using approximately 2.5 million genotyped and imputed common single nucleotide polymorphisms (SNPs) in 15,366 participants of European descent from the international CHARGE Consortium. Study-specific results were combined using fixed-effects inverse-variance weighted meta-analysis. SNPs demonstrating genome-wide significant (p<5 x 10(-8)) or suggestive associations (p<4 x 10(-7)) were evaluated for replication in an additional 8,463 subjects of European descent. The association of common variants at six genomic regions (in or near MUC1, ATP2B1, DCDC5, TRPM6, SHROOM3, and MDS1) with serum magnesium levels was genome-wide significant when meta-analyzed with the replication dataset. All initially significant SNPs from the CHARGE Consortium showed nominal association with clinically defined hypomagnesemia, two showed association with kidney function, two with bone mineral density, and one of these also associated with fasting glucose levels. Common variants in CNNM2, a magnesium transporter studied only in model systems to date, as well as in CNNM3 and CNNM4, were also associated with magnesium concentrations in this study. We observed no associations with serum sodium or potassium levels exceeding p<4 x 10(-7). Follow-up studies of newly implicated genomic loci may provide additional insights into the regulation and homeostasis of human serum magnesium levels.


Subject(s)
Genome-Wide Association Study , Magnesium/blood , Potassium/blood , Sodium/blood , White People/genetics , Adult , Aged , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
14.
Circulation ; 124(25): 2855-64, 2011 Dec 20.
Article in English | MEDLINE | ID: mdl-22144573

ABSTRACT

BACKGROUND: Coronary artery calcification (CAC) detected by computed tomography is a noninvasive measure of coronary atherosclerosis, which underlies most cases of myocardial infarction (MI). We sought to identify common genetic variants associated with CAC and further investigate their associations with MI. METHODS AND RESULTS: Computed tomography was used to assess quantity of CAC. A meta-analysis of genome-wide association studies for CAC was performed in 9961 men and women from 5 independent community-based cohorts, with replication in 3 additional independent cohorts (n=6032). We examined the top single-nucleotide polymorphisms (SNPs) associated with CAC quantity for association with MI in multiple large genome-wide association studies of MI. Genome-wide significant associations with CAC for SNPs on chromosome 9p21 near CDKN2A and CDKN2B (top SNP: rs1333049; P=7.58×10(-19)) and 6p24 (top SNP: rs9349379, within the PHACTR1 gene; P=2.65×10(-11)) replicated for CAC and for MI. Additionally, there is evidence for concordance of SNP associations with both CAC and MI at a number of other loci, including 3q22 (MRAS gene), 13q34 (COL4A1/COL4A2 genes), and 1p13 (SORT1 gene). CONCLUSIONS: SNPs in the 9p21 and PHACTR1 gene loci were strongly associated with CAC and MI, and there are suggestive associations with both CAC and MI of SNPs in additional loci. Multiple genetic loci are associated with development of both underlying coronary atherosclerosis and clinical events.


Subject(s)
Calcinosis/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Myocardial Infarction/genetics , Adult , Aged , Aged, 80 and over , Calcinosis/diagnostic imaging , Calcinosis/epidemiology , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/epidemiology , Polymorphism, Single Nucleotide/genetics , Radiography , Risk Factors
15.
Hum Mol Genet ; 19(21): 4296-303, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20705733

ABSTRACT

Serum calcium levels are tightly regulated. We performed genome-wide association studies (GWAS) in population-based studies participating in the CHARGE Consortium to uncover common genetic variations associated with total serum calcium levels. GWAS of serum calcium concentrations was performed in 20 611 individuals of European ancestry for ∼2.5 million genotyped and imputed single-nucleotide polymorphisms (SNPs). The SNP with the lowest P-value was rs17251221 (P = 2.4 * 10(-22), minor allele frequency 14%) in the calcium-sensing receptor gene (CASR). This lead SNP was associated with higher serum calcium levels [0.06 mg/dl (0.015 mmol/l) per copy of the minor G allele] and accounted for 0.54% of the variance in serum calcium concentrations. The identification of variation in CASR that influences serum calcium concentration confirms the results of earlier candidate gene studies. The G allele of rs17251221 was also associated with higher serum magnesium levels (P = 1.2 * 10(-3)), lower serum phosphate levels (P = 2.8 * 10(-7)) and lower bone mineral density at the lumbar spine (P = 0.038), but not the femoral neck. No additional genomic loci contained SNPs associated at genome-wide significance (P < 5 * 10(-8)). These associations resemble clinical characteristics of patients with familial hypocalciuric hypercalcemia, an autosomal-dominant disease arising from rare inactivating mutations in the CASR gene. We conclude that common genetic variation in the CASR gene is associated with similar but milder features in the general population.


Subject(s)
Calcium/blood , Receptors, Calcium-Sensing/genetics , Adult , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide
16.
Hum Mol Genet ; 19(9): 1863-72, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20167578

ABSTRACT

P-selectin and intercellular adhesion molecule-1 (ICAM-1) participate in inflammatory processes by promoting adhesion of leukocytes to vascular wall endothelium. Their soluble levels have been associated with adverse cardiovascular events. To identify loci affecting soluble levels of P-selectin (sP-selectin) and ICAM-1 (sICAM-1), we performed a genome-wide association study in a sample of 4115 (sP-selectin) and 9813 (sICAM-1) individuals of European ancestry as a part of The Cohorts for Heart and Aging Research in Genome Epidemiology consortium. The most significant SNP association for sP-selectin was within the SELP gene (rs6136, P = 4.05 x 10(-61)) and for sICAM-1 levels within the ICAM-1 gene (rs3093030, P = 3.53 x 10(-23)). Both sP-selectin and sICAM-1 were associated with ABO gene variants (rs579459, P = 1.86 x 10(-41) and rs649129, P = 1.22 x 10(-15), respectively) and in both cases the observed associations could be accounted for by the A1 allele of the ABO blood group. The absence of an association between ABO blood group and platelet-bound P-selectin levels in an independent subsample (N = 1088) from the ARIC study, suggests that the ABO blood group may influence cleavage of the P-selectin protein from the cell surface or clearance from the circulation, rather than its production and cellular presentation. These results provide new insights into adhesion molecule biology.


Subject(s)
ABO Blood-Group System/genetics , Intercellular Adhesion Molecule-1/blood , P-Selectin/blood , White People/genetics , Blood Platelets/metabolism , Enzyme-Linked Immunosorbent Assay , Fluorescence , Genome-Wide Association Study , Humans , P-Selectin/metabolism
17.
N Engl J Med ; 360(17): 1718-28, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19369658

ABSTRACT

BACKGROUND: The genes underlying the risk of stroke in the general population remain undetermined. METHODS: We carried out an analysis of genomewide association data generated from four large cohorts composing the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium, including 19,602 white persons (mean [+/-SD] age, 63+/-8 years) in whom 1544 incident strokes (1164 ischemic strokes) developed over an average follow-up of 11 years. We tested the markers most strongly associated with stroke in a replication cohort of 2430 black persons with 215 incident strokes (191 ischemic strokes), another cohort of 574 black persons with 85 incident strokes (68 ischemic strokes), and 652 Dutch persons with ischemic stroke and 3613 unaffected persons. RESULTS: Two intergenic single-nucleotide polymorphisms on chromosome 12p13 and within 11 kb of the gene NINJ2 were associated with stroke (P<5x10(-8)). NINJ2 encodes an adhesion molecule expressed in glia and shows increased expression after nerve injury. Direct genotyping showed that rs12425791 was associated with an increased risk of total (i.e., all types) and ischemic stroke, with hazard ratios of 1.30 (95% confidence interval [CI], 1.19 to 1.42) and 1.33 (95% CI, 1.21 to 1.47), respectively, yielding population attributable risks of 11% and 12% in the discovery cohorts. Corresponding hazard ratios were 1.35 (95% CI, 1.01 to 1.79; P=0.04) and 1.42 (95% CI, 1.06 to 1.91; P=0.02) in the large cohort of black persons and 1.17 (95% CI, 1.01 to 1.37; P=0.03) and 1.19 (95% CI, 1.01 to 1.41; P=0.04) in the Dutch sample; the results of an underpowered analysis of the smaller black cohort were nonsignificant. CONCLUSIONS: A genetic locus on chromosome 12p13 is associated with an increased risk of stroke.


Subject(s)
Chromosomes, Human, Pair 12/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Stroke/genetics , Aged , Black People/genetics , Cohort Studies , Female , Genetic Markers , Genetic Predisposition to Disease , Genotype , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Factors , White People/genetics
18.
Ann Neurol ; 69(6): 928-39, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21681796

ABSTRACT

OBJECTIVE: White matter hyperintensities (WMHs) detectable by magnetic resonance imaging are part of the spectrum of vascular injury associated with aging of the brain and are thought to reflect ischemic damage to the small deep cerebral vessels. WMHs are associated with an increased risk of cognitive and motor dysfunction, dementia, depression, and stroke. Despite a significant heritability, few genetic loci influencing WMH burden have been identified. METHODS: We performed a meta-analysis of genome-wide association studies (GWASs) for WMH burden in 9,361 stroke-free individuals of European descent from 7 community-based cohorts. Significant findings were tested for replication in 3,024 individuals from 2 additional cohorts. RESULTS: We identified 6 novel risk-associated single nucleotide polymorphisms (SNPs) in 1 locus on chromosome 17q25 encompassing 6 known genes including WBP2, TRIM65, TRIM47, MRPL38, FBF1, and ACOX1. The most significant association was for rs3744028 (p(discovery) = 4.0 × 10(-9) ; p(replication) = 1.3 × 10(-7) ; p(combined) = 4.0 × 10(-15) ). Other SNPs in this region also reaching genome-wide significance were rs9894383 (p = 5.3 × 10(-9) ), rs11869977 (p = 5.7 × 10(-9) ), rs936393 (p = 6.8 × 10(-9) ), rs3744017 (p = 7.3 × 10(-9) ), and rs1055129 (p = 4.1 × 10(-8) ). Variant alleles at these loci conferred a small increase in WMH burden (4-8% of the overall mean WMH burden in the sample). INTERPRETATION: This large GWAS of WMH burden in community-based cohorts of individuals of European descent identifies a novel locus on chromosome 17. Further characterization of this locus may provide novel insights into the pathogenesis of cerebral WMH.


Subject(s)
Cerebral Cortex/pathology , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Nerve Fibers, Myelinated/pathology , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Chromosomes, Human, Pair 17/genetics , Cognition Disorders/etiology , Cohort Studies , Female , Gene Frequency , Genotype , Humans , Leukoencephalopathies/complications , Magnetic Resonance Imaging , Male , Middle Aged , Movement Disorders/etiology , RNA, Messenger/metabolism , Residence Characteristics , White People
19.
Cytokine ; 60(2): 341-5, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22878343

ABSTRACT

CONTEXT: Transforming growth factor-beta1 (TGF-B1) is a highly pleiotropic cytokine whose functions include a central role in the induction of fibrosis. OBJECTIVE: To investigate the hypothesis that elevated plasma levels of TGF-B1 are positively associated with incident heart failure (HF). PARTICIPANTS AND METHODS: The hypotheses were tested using a two-phase case-control study design, ancillary to the Cardiovascular Health Study - a longitudinal, population-based cohort study. Cases were defined as having an incident HF event after their 1992-1993 exam and controls were free of HF at follow-up. TGF-B1 was measured using plasma collected in 1992-1993 and data from 89 cases and 128 controls were used for analysis. The association between TGF-B1 and risk of HF was evaluated using the weighted likelihood method, and odds ratios (OR) for risk of HF were calculated for TGF-B1 as a continuous linear variable and across quartiles of TGF-B1. RESULTS: The OR for HF was 1.88 (95% confidence intervals [CI] 1.26-2.81) for each nanogram increase in TGF-B1, and the OR for the highest quartile (compared to the lowest) of TGF-B1 was 5.79 (95% CI 1.65-20.34), after adjustment for age, sex, C-reactive protein, platelet count and digoxin use. Further adjustment with other covariates did not change the results. CONCLUSIONS: Higher levels of plasma TGF-B1 were associated with an increased risk of incident heart failure among older adults. However, further study is needed in larger samples to confirm these findings.


Subject(s)
Health , Heart Failure/blood , Heart Failure/epidemiology , Transforming Growth Factor beta1/blood , Aged , Case-Control Studies , Humans , Incidence , United States/epidemiology
20.
PLoS Genet ; 5(6): e1000539, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19557197

ABSTRACT

Central abdominal fat is a strong risk factor for diabetes and cardiovascular disease. To identify common variants influencing central abdominal fat, we conducted a two-stage genome-wide association analysis for waist circumference (WC). In total, three loci reached genome-wide significance. In stage 1, 31,373 individuals of Caucasian descent from eight cohort studies confirmed the role of FTO and MC4R and identified one novel locus associated with WC in the neurexin 3 gene [NRXN3 (rs10146997, p = 6.4x10(-7))]. The association with NRXN3 was confirmed in stage 2 by combining stage 1 results with those from 38,641 participants in the GIANT consortium (p = 0.009 in GIANT only, p = 5.3x10(-8) for combined analysis, n = 70,014). Mean WC increase per copy of the G allele was 0.0498 z-score units (0.65 cm). This SNP was also associated with body mass index (BMI) [p = 7.4x10(-6), 0.024 z-score units (0.10 kg/m(2)) per copy of the G allele] and the risk of obesity (odds ratio 1.13, 95% CI 1.07-1.19; p = 3.2x10(-5) per copy of the G allele). The NRXN3 gene has been previously implicated in addiction and reward behavior, lending further evidence that common forms of obesity may be a central nervous system-mediated disorder. Our findings establish that common variants in NRXN3 are associated with WC, BMI, and obesity.


Subject(s)
Genome-Wide Association Study , Nerve Tissue Proteins/genetics , Obesity/genetics , Aged , Body Mass Index , Cohort Studies , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Waist Circumference , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL