Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Stem Cells ; 33(9): 2726-37, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25969127

ABSTRACT

Mesenchymal stem cells (MSCs) are currently under investigation as tools to preserve cardiac structure and function following acute myocardial infarction (AMI). However, concerns have emerged regarding safety of acute intracoronary (IC) MSC delivery. This study aimed to characterize innate prothrombotic activity of MSC and identify means of its mitigation toward safe and efficacious therapeutic IC MSC delivery post-AMI. Expression of the initiator of the coagulation cascade tissue factor (TF) on MSC was detected and quantified by immunofluorescence, FACS, and immunoblotting. MSC-derived TF antigen was catalytically active and capable of supporting thrombin generation in vitro. Addition of MSCs to whole citrated blood enhanced platelet thrombus deposition on collagen at arterial shear, an effect abolished by heparin coadministration. In a porcine AMI model, IC infusion of 25 × 10(6) MSC during reperfusion was associated with a decrease in coronary flow reserve but not when coadministered with an antithrombin agent (heparin). Heparin reduced MSC-associated thrombosis incorporating platelets and VWF within the microvasculature. Heparin-assisted therapeutic MSC delivery also reduced apoptosis in the infarct border zone at 24 hours, significantly improved infarct size, left ventricular (LV) ejection fraction, LV volumes, wall motion, and attenuated histologic evidence of scar formation at 6 weeks post-AMI. Heparin alone or heparin-assisted fibroblast control cell delivery had no such effect. Procoagulant TF activity of therapeutic MSCs is associated with reductions in myocardial perfusion when delivered IC may be successfully managed by heparin coadministration. This study highlights an important mechanistic insight into safety concerns associated with therapeutic IC MSC delivery for AMI.


Subject(s)
Coronary Vessels/metabolism , Fibrinolytic Agents/therapeutic use , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Microvessels/metabolism , Thromboplastin/metabolism , Animals , Blood Coagulation/drug effects , Blood Coagulation/physiology , Bone Marrow/metabolism , Cells, Cultured , Coronary Vessels/pathology , Female , Fibrinolytic Agents/pharmacology , Humans , Mesenchymal Stem Cell Transplantation/adverse effects , Microvessels/drug effects , Microvessels/pathology , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Swine
2.
Burns ; 41(3): 548-57, 2015 May.
Article in English | MEDLINE | ID: mdl-25234958

ABSTRACT

The use of cell therapy to improve burn wound healing is limited as a validated cell source is not rapidly available after injury. Progenitor cells have shown potential to drive the intrinsic wound regeneration. Two sources of cells, allogeneic mesenchymal stem cells (MSC) and autologous culture modified monocytes (CMM), were assessed for their ability to influence burn wound healing. Both could be widely available shortly after injury. Cells were delivered in a fibrin matrix following contact burns in a porcine burns model. Application of MSC significantly decreased the area of unhealed burn compared to CMM or delivery matrix alone (6% MSC, 27% CMM, 24% Matrix, p<0.001). MSC treated wounds showed histological evidence of improved wound healing with increased collagen content (MSC 49%, CMM 42%, p<0.01), increased epidermal area (MSC 8.8%, CMM 6.1%, p<0.01) and dermal thickness (MSC 1108 µm, CMM 1007 µm, p<0.01) compared to CMM treated wounds. Labelled MSC and CMM were identified in the wounds after 2 weeks by immunohistochemistry and FACS. A single application of allogeneic MSC improves the rate of burn wound healing and improves the histological appearance of the burn wound. These cells show potential as a cell therapy that is rapidly available following burn.


Subject(s)
Burns/therapy , Mesenchymal Stem Cell Transplantation , Monocytes/transplantation , Skin/pathology , Wound Healing , Animals , Burns/pathology , Cell Culture Techniques , Cell Differentiation , Cells, Cultured/transplantation , Female , Sus scrofa , Swine , Transplantation, Homologous
3.
Biomaterials ; 69: 22-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26275859

ABSTRACT

We evaluated the therapeutic efficacy of a novel drug eluting stent (DES) inhibiting inflammation and smooth muscle cell (SMC) proliferation. We identified CX3CR1 as a targetable receptor for prevention of monocyte adhesion and inflammation and in-stent neointimal hyperplasia without interfering with stent re-endothelization. Efficacy of AZ12201182 (AZ1220), a CX3CR1 antagonist was evaluated in inhibition of monocyte attachment in vitro. A prototype AZ1220 eluting PLGA-based polymer coated stent developed with an optimal elution profile and dose of 1 µM/stent was tested over 4 weeks in a porcine model of coronary artery stenting. Polymer coated stents without AZ1220 and bare metal stents were used as controls. AZ1220 inhibited monocyte attachment to CX3CL1 in a dose dependent manner. AZ1220 eluted from polymer coated stents in an ex vivo flow system retained bioactivity in inhibiting monocyte attachment to CX3CL1. At 4 weeks following deployment, AZ1220 eluting stents significantly reduced (∼60%) in-stent stenosis compared to both bare metal and polymer only coated stents and markedly reduced peri-stent inflammation and monocyte/macrophage accumulation without affecting re-endothelization. Anti-CX3CR1 drug eluting stents potently inhibited in-stent stenosis and may offer an alternative to mTOR targeting by current DES, specifically inhibiting polymer-induced inflammatory response and SMC proliferation, while retaining an equivalent re-endothelization response to bare metal stents.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Coronary Stenosis/prevention & control , Coronary Vessels/drug effects , Drug-Eluting Stents/adverse effects , Inflammation/prevention & control , Receptors, Chemokine/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/therapeutic use , CX3C Chemokine Receptor 1 , Cell Proliferation/drug effects , Coated Materials, Biocompatible/chemistry , Coronary Stenosis/etiology , Coronary Stenosis/pathology , Coronary Vessels/pathology , Coronary Vessels/surgery , Female , Inflammation/etiology , Inflammation/pathology , Lactic Acid/chemistry , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Swine
4.
Biomaterials ; 35(32): 9012-22, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25096850

ABSTRACT

Site specific targeting remains elusive for gene and stem cell therapies in the cardiovascular field. One promising option involves use of devices that deliver larger and more sustained cell/gene payloads to specific disease sites using the versatility of percutaneous vascular access technology. Smooth muscle cells (SMCs) engineered to deliver high local concentrations of an angiogenic molecule (VEGF) were placed in an intravascular cell delivery device (ICDD) in a porcine model of chronic total occlusion (CTO) involving ameroid placement on the proximal left circumflex (LCx) artery. Implanted SMC were retained within the ICDD and were competent for VEGF production in vitro and in vivo. Following implantation, micro-CT analyses revealed that ICDD-VEGF significantly enhanced vasa vasora microvessel density with a concomitant increase in tissue VEGF protein levels and formation of endothelial cell colonies suggesting increased angiogenic potential. ICDD-VEGF markedly enhanced regional blood flow determined by microsphere and contrast CT analysis translating to a functional improvement in regional wall motion and global left ventricular (LV) systolic and diastolic function. Our data indicate robust, clinically relevant angiogenesis can be achieved in a human scale porcine chronic vascular occlusion model following ICDD-VEGF-based delivery of angiogenic cells. This may have implications for percutaneous delivery of numerous therapeutic factors promoting creation of microvascular bypass networks in chronic vaso-occlusive diseases.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Drug Delivery Systems/methods , Vascular Diseases/drug therapy , Vascular Endothelial Growth Factor A/pharmacology , Animals , Coronary Vessels/drug effects , Coronary Vessels/metabolism , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Female , Humans , Microvessels/drug effects , Microvessels/metabolism , Myocytes, Smooth Muscle/drug effects , Swine , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL