Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Elife ; 122023 04 19.
Article in English | MEDLINE | ID: mdl-37073955

ABSTRACT

The trapping of Poly-ADP-ribose polymerase (PARP) on DNA caused by PARP inhibitors (PARPi) triggers acute DNA replication stress and synthetic lethality (SL) in BRCA2-deficient cells. Hence, DNA damage is accepted as a prerequisite for SL in BRCA2-deficient cells. In contrast, here we show that inhibiting ROCK in BRCA2-deficient cells triggers SL independently from acute replication stress. Such SL is preceded by polyploidy and binucleation resulting from cytokinesis failure. Such initial mitosis abnormalities are followed by other M phase defects, including anaphase bridges and abnormal mitotic figures associated with multipolar spindles, supernumerary centrosomes and multinucleation. SL was also triggered by inhibiting Citron Rho-interacting kinase, another enzyme that, similarly to ROCK, regulates cytokinesis. Together, these observations demonstrate that cytokinesis failure triggers mitotic abnormalities and SL in BRCA2-deficient cells. Furthermore, the prevention of mitotic entry by depletion of Early mitotic inhibitor 1 (EMI1) augmented the survival of BRCA2-deficient cells treated with ROCK inhibitors, thus reinforcing the association between M phase and cell death in BRCA2-deficient cells. This novel SL differs from the one triggered by PARPi and uncovers mitosis as an Achilles heel of BRCA2-deficient cells.


Subject(s)
DNA Damage , Synthetic Lethal Mutations , Anaphase , Mitosis , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , rho-Associated Kinases/antagonists & inhibitors , BRCA2 Protein/genetics , Humans
2.
J Immunother Cancer ; 8(1)2020 06.
Article in English | MEDLINE | ID: mdl-32518090

ABSTRACT

BACKGROUND: Natural killer and cytotoxic CD8+ T cells are major players during antitumor immunity. They express NKG2D, an activating receptor that promotes tumor elimination through recognition of the MHC class I chain-related proteins A and B (MICA and MICB). Both molecules are overexpressed on a great variety of tumors from different tissues, making them attractive targets for immunotherapy. However, tumors shed MICA and MICB, and the soluble forms of both (sMICA and sMICB) mediate tumor-immune escape. Some reports indicate that anti-MICA antibodies (Ab) can promote the restoration of antitumor immunity through the induction of direct antitumor effects (antibody-dependent cell-mediated cytotoxicity, ADCC) and scavenging of sMICA. Therefore, we reasoned that an active induction of anti-MICA Ab with an immunogenic protein might represent a novel therapeutic and prophylactic alternative to restore antitumor immunity. METHODS: We generated a highly immunogenic chimeric protein (BLS-MICA) consisting of human MICA fused to the lumazine synthase from Brucella spp (BLS) and used it to generate anti-MICA polyclonal Ab (pAb) and to investigate if these anti-MICA Ab can reinstate antitumor immunity in mice using two different mouse tumors engineered to express MICA. We also explored the underlying mechanisms of this expected therapeutic effect. RESULTS: Immunization with BLS-MICA and administration of anti-MICA pAb elicited by BLS-MICA significantly delayed the growth of MICA-expressing mouse tumors but not of control tumors. The therapeutic effect of immunization with BLS-MICA included scavenging of sMICA and the anti-MICA Ab-mediated ADCC, promoting heightened intratumoral M1/proinflammatory macrophage and antigen-experienced CD8+ T cell recruitment. CONCLUSIONS: Immunization with the chimeric protein BLS-MICA constitutes a useful way to actively induce therapeutic anti-MICA pAb that resulted in a reprogramming of the antitumor immune response towards an antitumoral/proinflammatory phenotype. Hence, the BLS-MICA chimeric protein constitutes a novel antitumor vaccine of potential application in patients with MICA-expressing tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Histocompatibility Antigens Class I/immunology , Lymphoma/immunology , Recombinant Fusion Proteins/immunology , Urinary Bladder Neoplasms/immunology , Animals , Brucella/enzymology , Female , Histocompatibility Antigens Class I/genetics , Lymphoma/pathology , Lymphoma/therapy , Male , Mice , Mice, Inbred C57BL , Multienzyme Complexes/genetics , Multienzyme Complexes/immunology , NK Cell Lectin-Like Receptor Subfamily K/genetics , NK Cell Lectin-Like Receptor Subfamily K/immunology , Tumor Cells, Cultured , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/therapy
3.
Oncogene ; 38(22): 4310-4324, 2019 05.
Article in English | MEDLINE | ID: mdl-30705406

ABSTRACT

Translesion DNA synthesis (TLS) and homologous recombination (HR) cooperate during S-phase to safeguard replication forks integrity. Thus, the inhibition of TLS becomes a promising point of therapeutic intervention in HR-deficient cancers, where TLS impairment might trigger synthetic lethality (SL). The main limitation to test this hypothesis is the current lack of selective pharmacological inhibitors of TLS. Herein, we developed a miniaturized screening assay to identify inhibitors of PCNA ubiquitylation, a key post-translational modification required for efficient TLS activation. After screening a library of 627 kinase inhibitors, we found that targeting the pro-survival kinase AKT leads to strong impairment of PCNA ubiquitylation. Mechanistically, we found that AKT-mediated modulation of Proliferating Cell Nuclear Antigen (PCNA) ubiquitylation after UV requires the upstream activity of DNA PKcs, without affecting PCNA ubiquitylation levels in unperturbed cells. Moreover, we confirmed that persistent AKT inhibition blocks the recruitment of TLS polymerases to sites of DNA damage and impairs DNA replication forks processivity after UV irradiation, leading to increased DNA replication stress and cell death. Remarkably, when we compared the differential survival of HR-proficient vs HR-deficient cells, we found that the combination of UV irradiation and AKT inhibition leads to robust SL induction in HR-deficient cells. We link this phenotype to AKT ability to inhibit PCNA ubiquitylation, since the targeted knockdown of PCNA E3-ligase (RAD18) and a non-ubiquitylable (PCNA K164R) knock-in model recapitulate the observed SL induction. Collectively, this work identifies AKT as a novel regulator of PCNA ubiquitylation and provides the proof-of-concept of inhibiting TLS as a therapeutic approach to selectively kill HR-deficient cells submitted to replication stress.


Subject(s)
DNA Replication/genetics , Homologous Recombination/genetics , Proliferating Cell Nuclear Antigen/genetics , Proto-Oncogene Proteins c-akt/genetics , Ubiquitination/genetics , Cell Death/genetics , Cell Line , Cell Line, Tumor , DNA/genetics , DNA Damage/genetics , DNA-Directed DNA Polymerase/genetics , HCT116 Cells , HEK293 Cells , Humans , Ubiquitin-Protein Ligases/genetics
4.
Clin Cancer Res ; 25(13): 4049-4062, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30890549

ABSTRACT

PURPOSE: BRCA1 and BRCA2 deficiencies are widespread drivers of human cancers that await the development of targeted therapies. We aimed to identify novel synthetic lethal relationships with therapeutic potential using BRCA-deficient isogenic backgrounds. EXPERIMENTAL DESIGN: We developed a phenotypic screening technology to simultaneously search for synthetic lethal (SL) interactions in BRCA1- and BRCA2-deficient contexts. For validation, we developed chimeric spheroids and a dual-tumor xenograft model that allowed the confirmation of SL induction with the concomitant evaluation of undesired cytotoxicity on BRCA-proficient cells. To extend our results using clinical data, we performed retrospective analysis on The Cancer Genome Atlas (TCGA) breast cancer database. RESULTS: The screening of a kinase inhibitors library revealed that Polo-like kinase 1 (PLK1) inhibition triggers strong SL induction in BRCA1-deficient cells. Mechanistically, we found no connection between the SL induced by PLK1 inhibition and PARP inhibitors. Instead, we uncovered that BRCA1 downregulation and PLK1 inhibition lead to aberrant mitotic phenotypes with altered centrosomal duplication and cytokinesis, which severely reduced the clonogenic potential of these cells. The penetrance of PLK1/BRCA1 SL interaction was validated using several isogenic and nonisogenic cellular models, chimeric spheroids, and mice xenografts. Moreover, bioinformatic analysis revealed high-PLK1 expression in BRCA1-deficient tumors, a phenotype that was consistently recapitulated by inducing BRCA1 deficiency in multiple cell lines as well as in BRCA1-mutant cells. CONCLUSIONS: We uncovered an unforeseen addiction of BRCA1-deficient cancer cells to PLK1 expression, which provides a new means to exploit the therapeutic potential of PLK1 inhibitors in clinical trials, by generating stratification schemes that consider this molecular trait in patient cohorts.


Subject(s)
BRCA1 Protein/deficiency , Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Synthetic Lethal Mutations/drug effects , Animals , Apoptosis/drug effects , Apoptosis/genetics , BRCA2 Protein/deficiency , BRCA2 Protein/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cells, Cultured , Chromosome Aberrations , DNA Damage , Disease Models, Animal , Gene Expression , Gene Knockdown Techniques , Humans , Mice , Xenograft Model Antitumor Assays , Polo-Like Kinase 1
7.
Schizophr Res ; 127(1-3): 28-34, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21239144

ABSTRACT

We previously reported an association with a putative functional variant in the ADAMTSL3 gene, just below genome-wide significance in a genome-wide association study of schizophrenia. As variants impacting the function of ADAMTSL3 (a disintegrin-like and metalloprotease domain with thrombospondin type I motifs-like-3) could illuminate a novel disease mechanism and a potentially specific target, we have used complementary approaches to further evaluate the association. We imputed genotypes and performed high density association analysis using data from the HapMap and 1000 genomes projects. To review all variants that could potentially cause the association, and to identify additional possible pathogenic rare variants, we sequenced ADAMTSL3 in 92 schizophrenics. A total of 71 ADAMTSL3 variants were identified by sequencing, many were also seen in the 1000 genomes data, but 26 were novel. None of the variants identified by re-sequencing was in strong linkage disequilibrium (LD) with the associated markers. Imputation analysis refined association between ADAMTSL3 and schizophrenia, and highlighted additional common variants with similar levels of association. We evaluated the functional consequences of all variants identified by sequencing, or showing direct or imputed association. The strongest evidence for function remained with the originally associated variant, rs950169, suggesting that this variant may be causal of the association. Rare variants were also identified with possible functional impact. Our study confirms ADAMTSL3 as a candidate for further investigation in schizophrenia, using the variants identified here. The utility of imputation analysis is demonstrated, and we recommend wider use of this method to re-evaluate the existing canon of suggestive schizophrenia associations.


Subject(s)
Extracellular Matrix Proteins/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics , Schizophrenia/genetics , ADAMTS Proteins , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Risk Factors
8.
J Exp Med ; 206(9): 1883-97, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19652016

ABSTRACT

The cause of Crohn's disease (CD) remains poorly understood. Counterintuitively, these patients possess an impaired acute inflammatory response, which could result in delayed clearance of bacteria penetrating the lining of the bowel and predispose to granuloma formation and chronicity. We tested this hypothesis in human subjects by monitoring responses to killed Escherichia coli injected subcutaneously into the forearm. Accumulation of (111)In-labeled neutrophils at these sites and clearance of (32)P-labeled bacteria from them were markedly impaired in CD. Locally increased blood flow and bacterial clearance were dependent on the numbers of bacteria injected. Secretion of proinflammatory cytokines by CD macrophages was grossly impaired in response to E. coli or specific Toll-like receptor agonists. Despite normal levels and stability of cytokine messenger RNA, intracellular levels of tumor necrosis factor (TNF) were abnormally low in CD macrophages. Coupled with reduced secretion, these findings indicate accelerated intracellular breakdown. Differential transcription profiles identified disease-specific genes, notably including those encoding proteins involved in vesicle trafficking. Intracellular destruction of TNF was decreased by inhibitors of lysosomal function. Together, our findings suggest that in CD macrophages, an abnormal proportion of cytokines are routed to lysosomes and degraded rather than being released through the normal secretory pathway.


Subject(s)
Crohn Disease/immunology , Cytokines/metabolism , Escherichia coli/immunology , Macrophages/metabolism , Adult , Aged , Crohn Disease/microbiology , Female , Gene Expression Profiling , Humans , Indium Radioisotopes , Linear Models , Male , Middle Aged , Neutrophils/microbiology , Oligonucleotide Array Sequence Analysis , Phosphorus Radioisotopes , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/metabolism
9.
Biomarkers ; 13(6): 618-36, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18830857

ABSTRACT

Recent advances in clinical, pathological and neuroscience studies have identified disease-modifying therapeutic approaches for Alzheimer's disease that are now in clinical trials. This has highlighted the need for reliable and convenient biomarkers for both early disease diagnosis and a rapid signal of drug efficacy. We describe the identification and assessment of a number of candidate biomarkers in patients with Alzheimer's disease and the correlation of those biomarkers with rosiglitazone therapeutic efficacy, as represented by a change in the Alzheimer's Disease Assessment Scale-Cognitive (ADAS-Cog). Plasma from 41 patients with Alzheimer's disease were analysed by open platform proteomics at baseline and after receiving 8 mg rosiglitazone for 24 weeks. From a comparison of protein expression following treatment with rosiglitazone, 97 proteins were observed to be differentially expressed with a p-value<0.01. From this analysis and comparison to recently published data from our laboratory, a prioritized list of 10 proteins were analysed by immunoassay and/or functional assay in a wider set of samples from the same clinical study, representing a rosiglitazone dose response, in order to verify the changes observed. A number of these proteins appeared to show a correlation with change in ADAS-Cog at the higher treatment doses compared with the placebo. Alpha-2-macroglobulin, complement C1 inhibitor, complement factor H and apolipoprotein E expression showed a correlation with ADAS-Cog score at the higher doses (4 mg and 8 mg). These results are discussed in light of the pathology and other recently published data.


Subject(s)
Alzheimer Disease/drug therapy , Biomarkers/blood , Cognition/drug effects , Nootropic Agents/therapeutic use , Thiazolidinediones/therapeutic use , Aged , Alzheimer Disease/metabolism , Apolipoproteins E/blood , Complement C1 Inactivator Proteins/metabolism , Complement C1 Inhibitor Protein , Complement Factor H/metabolism , Dose-Response Relationship, Drug , Double-Blind Method , Europe , Female , Humans , Male , Middle Aged , New Zealand , Proteomics , Reproducibility of Results , Rosiglitazone , Severity of Illness Index , Time Factors , Treatment Outcome , alpha-Macroglobulins/metabolism
10.
Proteomics Clin Appl ; 2(4): 467-77, 2008 Apr.
Article in English | MEDLINE | ID: mdl-21136851

ABSTRACT

Emerging disease modifying therapeutic strategies for Alzheimer's disease (AD) have generated a critical need for biomarkers of early stage disease. Here, we describe the identification and assessment of a number of candidate biomarkers in patients with mild to moderate probable AD. Plasma from 47 probable Alzheimer's patients and 47 matched controls were analysed by proteomics to define a significant number of proteins whose expression appeared to be associated with AD. These were compared to a similar proteomic comparison of a mouse transgenic model of amyloidosis, which showed encouraging overlap with the human data. From these studies a prioritised list of 31 proteins were then analysed by immunoassay and/or functional assay in the same human cohort to verify the changes observed. Eight proteins continued to show significance by either immunoassay or functional assay in the human plasma and these were tested in a further set of 100 probable AD patients and 100 controls from the original cohort. From our data it appeared that two proteins, serpin F1 (pigment epithelium-derived factor) and complement C1 inhibitor are down-regulated in plasma from AD patients.

SELECTION OF CITATIONS
SEARCH DETAIL