Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 191
Filter
1.
Nature ; 615(7952): 418-424, 2023 03.
Article in English | MEDLINE | ID: mdl-36922612

ABSTRACT

Chirality is a geometrical property described by continuous mathematical functions1-5. However, in chemical disciplines, chirality is often treated as a binary left or right characteristic of molecules rather than a continuity of chiral shapes. Although they are theoretically possible, a family of stable chemical structures with similar shapes and progressively tuneable chirality is yet unknown. Here we show that nanostructured microparticles with an anisotropic bowtie shape display chirality continuum and can be made with widely tuneable twist angle, pitch, width, thickness and length. The self-limited assembly of the bowties enables high synthetic reproducibility, size monodispersity and computational predictability of their geometries for different assembly conditions6. The bowtie nanoassemblies show several strong circular dichroism peaks originating from absorptive and scattering phenomena. Unlike classical chiral molecules, these particles show a continuum of chirality measures2 that correlate exponentially with the spectral positions of the circular dichroism peaks. Bowtie particles with variable polarization rotation were used to print photonically active metasurfaces with spectrally tuneable positive or negative polarization signatures for light detection and ranging (LIDAR) devices.

2.
Nature ; 610(7933): 674-679, 2022 10.
Article in English | MEDLINE | ID: mdl-36253468

ABSTRACT

Reconfigurable, mechanically responsive crystalline materials are central components in many sensing, soft robotic, and energy conversion and storage devices1-4. Crystalline materials can readily deform under various stimuli and the extent of recoverable deformation is highly dependent upon bond type1,2,5-10. Indeed, for structures held together via simple electrostatic interactions, minimal deformations are tolerated. By contrast, structures held together by molecular bonds can, in principle, sustain much larger deformations and more easily recover their original configurations. Here we study the deformation properties of well-faceted colloidal crystals engineered with DNA. These crystals are large in size (greater than 100 µm) and have a body-centred cubic (bcc) structure with a high viscoelastic volume fraction (of more than 97%). Therefore, they can be compressed into irregular shapes with wrinkles and creases, and, notably, these deformed crystals, upon rehydration, assume their initial well-formed crystalline morphology and internal nanoscale order within seconds. For most crystals, such compression and deformation would lead to permanent, irreversible damage. The substantial structural changes to the colloidal crystals are accompanied by notable and reversible optical property changes. For example, whereas the original and structurally recovered crystals exhibit near-perfect (over 98%) broadband absorption in the ultraviolet-visible region, the deformed crystals exhibit significantly increased reflection (up to 50% of incident light at certain wavelengths), mainly because of increases in their refractive index and inhomogeneity.


Subject(s)
Colloids , DNA , Colloids/chemistry , DNA/chemistry , Particle Size , Static Electricity , Crystallization
3.
Nat Mater ; 23(3): 424-428, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37919350

ABSTRACT

In principle, designing and synthesizing almost any class of colloidal crystal is possible. Nonetheless, the deliberate and rational formation of colloidal quasicrystals has been difficult to achieve. Here we describe the assembly of colloidal quasicrystals by exploiting the geometry of nanoscale decahedra and the programmable bonding characteristics of DNA immobilized on their facets. This process is enthalpy-driven, works over a range of particle sizes and DNA lengths, and is made possible by the energetic preference of the system to maximize DNA duplex formation and favour facet alignment, generating local five- and six-coordinated motifs. This class of axial structures is defined by a square-triangle tiling with rhombus defects and successive on-average quasiperiodic layers exhibiting stacking disorder which provides the entropy necessary for thermodynamic stability. Taken together, these results establish an engineering milestone in the deliberate design of programmable matter.


Subject(s)
DNA , DNA/genetics , DNA/chemistry , Thermodynamics
4.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35042813

ABSTRACT

Entropy alone can self-assemble hard nanoparticles into colloidal crystals of remarkable complexity whose structures are the same as atomic and molecular crystals, but with larger lattice spacings. Molecular simulation is a powerful tool used extensively to study the self-assembly of ordered phases from disordered fluid phases of atoms, molecules, or nanoparticles. However, it is not yet possible to predict colloidal crystal structures a priori from particle shape as we can for atomic crystals from electronic valency. Here, we present such a first-principles theory. By calculating and minimizing excluded volume within the framework of statistical mechanics, we describe the directional entropic forces that collectively emerge between hard shapes, in familiar terms used to describe chemical bonds. We validate our theory by demonstrating that it predicts thermodynamically preferred structures for four families of hard polyhedra that match, in every instance, previous simulation results. The success of this first-principles approach to entropic colloidal crystal structure prediction furthers fundamental understanding of both entropically driven crystallization and conceptual pictures of bonding in matter.

5.
J Chem Phys ; 160(15)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38624110

ABSTRACT

Detecting and analyzing the local environment is crucial for investigating the dynamical processes of crystal nucleation and shape colloidal particle self-assembly. Recent developments in machine learning provide a promising avenue for better order parameters in complex systems that are challenging to study using traditional approaches. However, the application of machine learning to self-assembly on systems of particle shapes is still underexplored. To address this gap, we propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment classifier for systems of particle shapes, using input features such as particle distances and orientations. Our MLP classifier is trained in a supervised manner with a shape symmetry-encoded data augmentation technique without the need for any conventional roto-translations invariant symmetry functions. We evaluate the performance of our classifiers on four different scenarios involving self-assembly of cubic structures, two-dimensional and three-dimensional patchy particle shape systems, hexagonal bipyramids with varying aspect ratios, and truncated shapes with different degrees of truncation. The proposed training process and data augmentation technique are both straightforward and flexible, enabling easy application of the classifier to other processes involving particle orientations. Our work thus presents a valuable tool for investigating self-assembly processes on systems of particle shapes, with potential applications in structure identification of any particle-based or molecular system where orientations can be defined.

6.
Proc Natl Acad Sci U S A ; 118(3)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33431683

ABSTRACT

Plastic deformation of crystalline materials with isotropic particle attractions proceeds by the creation and migration of dislocations under the influence of external forces. If dislocations are produced and migrated under the action of local forces, then material shape change can occur without the application of surface forces. We investigate how particles with variable diameters can be embedded in colloidal monolayers to produce dislocations on demand. We find in simulation that when embedded clusters of variable diameter particles are taken through multiple cycles of swelling and shrinking, large cumulative plastic slip is produced by the creation and biased motion of dislocation pairs in the solid for embedded clusters of particular geometries. In this way, dislocations emitted by these clusters (biased "dislocation emitters") can be used to reshape colloidal matter. Our results are also applicable to larger-scale swarms of robotic particles that organize into dense ordered two-dimensional (2D) arrangements. We conclude with a discussion of how dislocations fulfill for colloids the role sought by "metamodules" in lattice robotics research and show how successive applications of shear as a unit operation can produce shape change through slicing and swirling.

7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34001591

ABSTRACT

The rigid constraints of chemistry-dictated by quantum mechanics and the discrete nature of the atom-limit the set of observable atomic crystal structures. What structures are possible in the absence of these constraints? Here, we systematically crystallize one-component systems of particles interacting with isotropic multiwell pair potentials. We investigate two tunable families of pairwise interaction potentials. Our simulations self-assemble a multitude of crystal structures ranging from basic lattices to complex networks. Sixteen of the structures have natural analogs spanning all coordination numbers found in inorganic chemistry. Fifteen more are hitherto unknown and occupy the space between covalent and metallic coordination environments. The discovered crystal structures constitute targets for self-assembly and expand our understanding of what a crystal structure can look like.

8.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Article in English | MEDLINE | ID: mdl-33563761

ABSTRACT

Quasicrystals have been discovered in a variety of materials ranging from metals to polymers. Yet, why and how they form is incompletely understood. In situ transmission electron microscopy of alloy quasicrystal formation in metals suggests an error-and-repair mechanism, whereby quasiperiodic crystals grow imperfectly with phason strain present, and only perfect themselves later into a high-quality quasicrystal with negligible phason strain. The growth mechanism has not been investigated for other types of quasicrystals, such as dendrimeric, polymeric, or colloidal quasicrystals. Soft-matter quasicrystals typically result from entropic, rather than energetic, interactions, and are not usually grown (either in laboratories or in silico) into large-volume quasicrystals. Consequently, it is unknown whether soft-matter quasicrystals form with the high degree of structural quality found in metal alloy quasicrystals. Here, we investigate the entropically driven growth of colloidal dodecagonal quasicrystals (DQCs) via computer simulation of systems of hard tetrahedra, which are simple models for anisotropic colloidal particles that form a quasicrystal. Using a pattern recognition algorithm applied to particle trajectories during DQC growth, we analyze phason strain to follow the evolution of quasiperiodic order. As in alloys, we observe high structural quality; DQCs with low phason strain crystallize directly from the melt and only require minimal further reduction of phason strain. We also observe transformation from a denser approximant to the DQC via continuous phason strain relaxation. Our results demonstrate that soft-matter quasicrystals dominated by entropy can be thermodynamically stable and grown with high structural quality--just like their alloy quasicrystal counterparts.

9.
Nano Lett ; 23(1): 116-123, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36541890

ABSTRACT

Lithographically defined microwell templates are used to study DNA-guided colloidal crystal assembly parameters, including superlattice position, habit orientation, and size, in an effort to increase our understanding of the crystallization process. In addition to enabling the synthesis of arrays of individual superlattices in arbitrary predefined patterns, the technique allows one to study the growth pathways of the crystals via ex situ scanning electron microscopy. Importantly, a Volmer-Weber (VM) (island formation)-like growth mode is identified, which has been reproduced via simulations. Notably, both experiment and simulation reveal that the crystallites merge and reorient within the microwells that defined the crystal growth to form single-crystalline structures, an observation not common for VM pathways. The control afforded by this platform will facilitate efforts in constructing metamaterials from colloidal crystals as well as their integration into optical devices and applications.


Subject(s)
Colloids , Optical Devices , Colloids/chemistry , Crystallization , Microscopy, Electron, Scanning , DNA/chemistry
10.
J Am Chem Soc ; 145(11): 6280-6288, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36912558

ABSTRACT

Multicomponent nanoparticle superlattices (SLs) promise the integration of nanoparticles (NPs) with remarkable electronic, magnetic, and optical properties into a single structure. Here, we demonstrate that heterodimers consisting of two conjoined NPs can self-assemble into novel multicomponent SLs with a high degree of alignment between the atomic lattices of individual NPs, which has been theorized to lead to a wide variety of remarkable properties. Specifically, by using simulations and experiments, we show that heterodimers composed of larger Fe3O4 domains decorated with a Pt domain at one vertex can self-assemble into an SL with long-range atomic alignment between the Fe3O4 domains of different NPs across the SL. The SLs show an unanticipated decreased coercivity relative to nonassembled NPs. In situ scattering of the self-assembly reveals a two-stage mechanism of self-assembly: translational ordering between NPs develops before atomic alignment. Our experiments and simulation indicate that atomic alignment requires selective epitaxial growth of the smaller domain during heterodimer synthesis and specific size ratios of the heterodimer domains as opposed to specific chemical composition. This composition independence makes the self-assembly principles elucidated here applicable to the future preparation of multicomponent materials with fine structural control.

11.
Nat Mater ; 21(5): 580-587, 2022 05.
Article in English | MEDLINE | ID: mdl-35027717

ABSTRACT

Colloidal crystal engineering of complex, low-symmetry architectures is challenging when isotropic building blocks are assembled. Here we describe an approach to generating such structures based upon programmable atom equivalents (nanoparticles functionalized with many DNA strands) and mobile electron equivalents (small particles functionalized with a low number of DNA strands complementary to the programmable atom equivalents). Under appropriate conditions, the spatial distribution of the electron equivalents breaks the symmetry of isotropic programmable atom equivalents, akin to the anisotropic distribution of valence electrons or coordination sites around a metal atom, leading to a set of well-defined coordination geometries and access to three new low-symmetry crystalline phases. All three phases represent the first examples of colloidal crystals, with two of them having elemental analogues (body-centred tetragonal and high-pressure gallium), while the third (triple double-gyroid structure) has no known natural equivalent. This approach enables the creation of complex, low-symmetry colloidal crystals that might find use in various technologies.


Subject(s)
Electrons , Nanoparticles , Anisotropy , DNA/chemistry , Engineering , Nanoparticles/chemistry
12.
Phys Rev Lett ; 131(25): 258201, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181337

ABSTRACT

Entropic self-assembly is governed by the shape of the constituent particles, yet a priori prediction of crystal structures from particle shape alone is nontrivial for anything but the simplest of space-filling shapes. At the same time, most polyhedra are not space filling due to geometric constraints, but these constraints can be relaxed or even eliminated by sufficiently curving space. We show using Monte Carlo simulations that the majority of hard Platonic solids self-assemble entropically into space-filling crystals when constrained to the surface volume of a 3-sphere. As we gradually decrease curvature to "flatten" space and compare the local morphologies of crystals assembling in curved and flat space, we show that the Euclidean assemblies can be categorized as either remnants of tessellations in curved space (tetrahedra and dodecahedra) or nontessellation-based assemblies caused by large-scale geometric frustration (octahedra and icosahedra).

13.
Soft Matter ; 19(36): 7011-7019, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37671647

ABSTRACT

Entropy compartmentalization provides new self-assembly routes to colloidal host-guest (HG) structures. Leveraging host particle shape to drive the assembly of HG structures has only recently been proposed and demonstrated. However, the extent to which the guest particles can dictate the structure of the porous network of host particles has not been explored. In this work, by modifying only the guest shape, we show athermal, binary mixtures of star-shaped host particles and convex polygon-shaped guest particles assemble as many as five distinct crystal structures, including rotator and discrete rotator guest crystals, two homoporous host crystals, and one heteroporous host crystal. Edge-to-edge alignment of neighboring stars results in the formation of three distinct pore motifs, whose preferential formation is controlled by the size and shape of the guest particles. Finally, we confirm, via free volume calculations, that assembly is driven by entropy compartmentalization, where the hosts and guests contribute differently to the free energy of the system; free volume calculations also explain differences in assembly based on guest shape. These results provide guest design rules for assembling colloidal HG structures, especially on surfaces and interfaces.

14.
Soft Matter ; 19(15): 2726-2736, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36974942

ABSTRACT

The digital alchemy framework is an extended ensemble simulation technique that incorporates particle attributes as thermodynamic variables, enabling the inverse design of colloidal particles for desired behavior. Here, we extend the digital alchemy framework for the inverse design of patchy spheres that self-assemble into target crystal structures. To constrain the potentials to non-trivial solutions, we conduct digital alchemy simulations with constant second virial coefficient. We optimize the size, range, and strength of patchy interactions in model triblock Janus spheres to self-assemble the 2D kagome and snub square lattices and the 3D pyrochlore lattice, and demonstrate self-assembly of all three target structures with the designed models. The particles designed for the kagome and snub square lattices assemble into high quality clusters of their target structures, while competition from similar polymorphs lower the yield of the pyrochlore assemblies. We find that the alchemically designed potentials do not always match physical intuition, illustrating the ability of the method to find nontrivial solutions to the optimization problem. We identify a window of second virial coefficients that result in self-assembly of the target structures, analogous to the crystallization slot in protein crystallization.

15.
Proc Natl Acad Sci U S A ; 117(16): 8700-8710, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32265280

ABSTRACT

Micron-scale robots require systems that can morph into arbitrary target configurations controlled by external agents such as heat, light, electricity, and chemical environment. Achieving this behavior using conventional approaches is challenging because the available materials at these scales are not programmable like their macroscopic counterparts. To overcome this challenge, we propose a design strategy to make a robotic machine that is both programmable and compatible with colloidal-scale physics. Our strategy uses motors in the form of active colloidal particles that constantly propel forward. We sequence these motors end-to-end in a closed chain forming a two-dimensional loop that folds under its mechanical constraints. We encode the target loop shape and its motion by regulating six design parameters, each scale-invariant and achievable at the colloidal scale. We demonstrate the plausibility of our design strategy using centimeter-scale robots called kilobots We use Brownian dynamics simulation to explore the large design space beyond that possible with kilobots, and present an analytical theory to aid the design process. Multiple loops can also be fused together to achieve several complex shapes and robotic behaviors, demonstrated by folding a letter shape "M," a dynamic gripper, and a dynamic pacman The material-agnostic, scale-free, and programmable nature of our design enables building a variety of reconfigurable and autonomous robots at both colloidal scales and macroscales.

16.
Phys Rev Lett ; 128(18): 188001, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35594109

ABSTRACT

The self-assembly of binary nanoparticle superlattices from colloidal mixtures is a promising method for the fabrication of complex colloidal cocrystal structures. However, binary mixtures often form amorphous or metastable phases instead of the thermodynamically stable phase. Here we show that in binary mixtures of differently sized spherical particles, an excess of the smaller component can promote-and, in some cases, may be necessary for-the self-assembly of a binary cocrystal. Using computer simulations, we identify two mechanisms responsible for this phenomenon. First, excess small particles act like plasticizers and enable systems to reach a greater supersaturation before kinetic arrest occurs. Second, they can disfavor competing structures that may interfere with the growth of the target structure. We find the phase behavior of simulated mixtures of nearly hard spheres closely matches published experimental results. We demonstrate the generality of our findings for mixtures of particles of arbitrary shape by presenting a binary mixture of hard shapes that only self-assembles with an excess of the smaller component.

17.
Soft Matter ; 18(45): 8561-8571, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36200373

ABSTRACT

In many biological systems, the curvature of the surfaces cells live on influences their collective properties. Curvature should likewise influence the behavior of active colloidal particles. We show using molecular simulation of self-propelled active particles on surfaces of Gaussian curvature (both positive and negative) how curvature sign and magnitude can alter the system's collective behavior. Curvature acts as a geometrical lens and shifts the critical density of motility-induced phase separation (MIPS) to lower values for positive curvature and higher values for negative curvature, which we explain theoretically by the nature of parallel lines in spherical and hyperbolic space. Curvature also fluidizes dense MIPS clusters due to the emergence of defect patterns disrupting the crystalline order inside the clusters. Using our findings, we engineer three confining surfaces that strategically combine regions of different curvature to produce a host of novel dynamical behaviors, including cyclic MIPS on spherocylinders, directionally biased cyclic MIPS on spherocones, and position dependent cluster fluctuations on metaballs.


Subject(s)
Computer Simulation , Normal Distribution
18.
Soft Matter ; 18(2): 304-311, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34878488

ABSTRACT

Photonic crystals, appealing for their ability to control light, are constructed from periodic regions of different dielectric constants. Yet, the structural holy grail in photonic materials, diamond, remains challenging to synthesize at the colloidal length scale. Here we explore new ways to assemble diamond using modified gyrobifastigial (mGBF) nanoparticles, a shape that resembles two anti-aligned triangular prisms. We investigate the parameter space that leads to the self-assembly of diamond, and we compare the likelihood of defects in diamond self-assembled via mGBF vs. the nanoparticle shape that is the current focus for assembling diamond, the truncated tetrahedra. We introduce a potential route for realizing mGBF particles by dimerizing triangular prisms using attractive patches, and we report the impact of this superstructure on the photonic properties.

19.
Soft Matter ; 18(5): 1044-1053, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35019923

ABSTRACT

Studies of active particle systems have demonstrated that particle anisotropy can impact the collective behavior of a system, motivating a systematic study. Here, we report a systematic computational investigation of the role of anisotropy in shape and active force director on the collective behavior of a two-dimensional active colloidal system. We find that shape and force anisotropy can combine to produce critical densities both lower and higher than those of disks. We demonstrate that changing particle anisotropy tunes what we define as a "collision efficiency" of inter-particle collisions in leading to motility-induced phase separation (MIPS) of the system. We use this efficiency to determine the relative critical density across systems. Additionally, we observe that local structure in phase-separated clusters is the same as the particle's equilibrium densest packing, suggesting a general connection between equilibrium behavior and non-equilibrium cluster structure of self-propelled anisotropic particles. In engineering applications for active colloidal systems, shape-controlled steric interactions such as those described here may offer a simple route for tailoring emergent behaviors.

20.
Proc Natl Acad Sci U S A ; 116(30): 14843-14851, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285316

ABSTRACT

Complex crystallization pathways are common in protein crystallization, tetrahedrally coordinated systems, and biomineralization, where single or multiple precursors temporarily appear before the formation of the crystal. The emergence of precursors is often explained by a unique property of the system, such as short-range attraction, directional bonding, or ion association. But, structural characteristics of the prenucleation phases found in multistep crystallization remain unclear, and models are needed for testing and expanding the understanding of fluid-to-solid ordering pathways. Here, we report 3 instances of 2-step crystallization of hard-particle fluids. Crystallization in these systems proceeds via a high-density precursor fluid phase with prenucleation motifs in the form of clusters, fibers and layers, and networks, respectively. The density and diffusivity change across the fluid-fluid phase transition increases with motif dimension. We observe crystal nucleation to be catalyzed by the interface between the 2 fluid phases. The crystals that form are complex, including, notably, a crystal with 432 particles in the cubic unit cell. Our results establish the existence of complex crystallization pathways in entropic systems and reveal prenucleation motifs of various dimensions.

SELECTION OF CITATIONS
SEARCH DETAIL