Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
PLoS Biol ; 20(4): e3001623, 2022 04.
Article in English | MEDLINE | ID: mdl-35452449

ABSTRACT

Molecular biology holds a vast potential for tackling climate change and biodiversity loss. Yet, it is largely absent from the current strategies. We call for a community-wide action to bring molecular biology to the forefront of climate change solutions.


Subject(s)
Biodiversity , Climate Change , Ecosystem , Molecular Biology
2.
New Phytol ; 243(1): 240-257, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38725421

ABSTRACT

Gorteria diffusa has elaborate petal spots that attract pollinators through sexual deception, but how G. diffusa controls spot development is largely unknown. Here, we investigate how pigmentation is regulated during spot formation. We determined the anthocyanin composition of G. diffusa petals and combined gene expression analysis with protein interaction assays to characterise R2R3-MYBs that likely regulate pigment production in G. diffusa petal spots. We found that cyanidin 3-glucoside pigments G. diffusa ray floret petals. Unlike other petal regions, spots contain a high proportion of malonylated anthocyanin. We identified three subgroup 6 R2R3-MYB transcription factors (GdMYBSG6-1,2,3) that likely activate the production of spot pigmentation. These genes are upregulated in developing spots and induce ectopic anthocyanin production upon heterologous expression in tobacco. Interaction assays suggest that these transcription factors regulate genes encoding three anthocyanin synthesis enzymes. We demonstrate that the elaboration of complex spots in G. diffusa begins with the accumulation of malonylated pigments at the base of ray floret petals, positively regulated by three paralogous R2R3-MYB transcription factors. Our results indicate that the functional diversification of these GdMYBSG6s involved changes in the spatial control of their transcription, and modification of the duration of GdMYBSG6 gene expression contributes towards floral variation within the species.


Subject(s)
Anthocyanins , Flowers , Gene Expression Regulation, Plant , Pigmentation , Transcription Factors , Anthocyanins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Flowers/metabolism , Flowers/genetics , Pigmentation/genetics , Animals , Coleoptera/metabolism , Coleoptera/genetics , Nicotiana/genetics , Nicotiana/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Phylogeny
3.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34911759

ABSTRACT

Chiral asymmetry is important in a wide variety of disciplines and occurs across length scales. While several natural chiral biomolecules exist only with single handedness, they can produce complex hierarchical structures with opposite chiralities. Understanding how the handedness is transferred from molecular to the macroscopic scales is far from trivial. An intriguing example is the transfer of the handedness of helicoidal organizations of cellulose microfibrils in plant cell walls. These cellulose helicoids produce structural colors if their dimension is comparable to the wavelength of visible light. All previously reported examples of a helicoidal structure in plants are left-handed except, remarkably, in the Pollia condensata fruit; both left- and right-handed helicoidal cell walls are found in neighboring cells of the same tissue. By simultaneously studying optical and mechanical responses of cells with different handednesses, we propose that the chirality of helicoids results from differences in cell wall composition. In detail, here we showed statistical substantiation of three different observations: 1) light reflected from right-handed cells is red shifted compared to light reflected from left-handed cells, 2) right-handed cells occur more rarely than left-handed ones, and 3) right-handed cells are located mainly in regions corresponding to interlocular divisions. Finally, 4) right-handed cells have an average lower elastic modulus compared to left-handed cells of the same color. Our findings, combined with mechanical simulation, suggest that the different chiralities of helicoids in the cell wall may result from different chemical composition, which strengthens previous hypotheses that hemicellulose might mediate the rotations of cellulose microfibrils.


Subject(s)
Cell Wall/chemistry , Commelinaceae/chemistry , Fruit/chemistry , Cell Wall/ultrastructure , Cellulose/chemistry , Color , Elastic Modulus , Microfibrils/chemistry , Polysaccharides/chemistry
4.
New Phytol ; 237(2): 643-655, 2023 01.
Article in English | MEDLINE | ID: mdl-36229924

ABSTRACT

Structural color is poorly known in plants relative to animals. In fruits, only a handful of cases have been described, including in Viburnum tinus where the blue color results from a disordered multilayered reflector made of lipid droplets. Here, we examine the broader evolutionary context of fruit structural color across the genus Viburnum. We obtained fresh and herbarium fruit material from 30 Viburnum species spanning the phylogeny and used transmission electron microscopy, optical simulations, and ancestral state reconstruction to identify the presence/absence of photonic structures in each species, understand the mechanism producing structural color in newly identified species, relate the development of cell wall structure to reflectance in Viburnum dentatum, and describe the evolution of cell wall architecture across Viburnum. We identify at least two (possibly three) origins of blue fruit color in Viburnum in species which produce large photonic structures made of lipid droplets embedded in the cell wall and which reflect blue light. Examining the full spectrum of mechanisms producing color in pl, including structural color as well as pigments, will yield further insights into the diversity, ecology, and evolution of fruit color.


Subject(s)
Adoxaceae , Viburnum , Animals , Fruit , Color , Lipids/analysis
5.
Nature ; 550(7677): 469-474, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045384

ABSTRACT

Diverse forms of nanoscale architecture generate structural colour and perform signalling functions within and between species. Structural colour is the result of the interference of light from approximately regular periodic structures; some structural disorder is, however, inevitable in biological organisms. Is this disorder functional and subject to evolutionary selection, or is it simply an unavoidable outcome of biological developmental processes? Here we show that disordered nanostructures enable flowers to produce visual signals that are salient to bees. These disordered nanostructures (identified in most major lineages of angiosperms) have distinct anatomies but convergent optical properties; they all produce angle-dependent scattered light, predominantly at short wavelengths (ultraviolet and blue). We manufactured artificial flowers with nanoscale structures that possessed tailored levels of disorder in order to investigate how foraging bumblebees respond to this optical effect. We conclude that floral nanostructures have evolved, on multiple independent occasions, an effective degree of relative spatial disorder that generates a photonic signature that is highly salient to insect pollinators.


Subject(s)
Bees/physiology , Color , Flowers/anatomy & histology , Light , Nanostructures/chemistry , Pollination/physiology , Animals , Magnoliopsida/anatomy & histology , Phylogeny , Surface Properties
6.
BMC Genomics ; 23(1): 604, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35986242

ABSTRACT

BACKGROUND: Flavonols are the largest subgroup of flavonoids, possessing multiple functions in plants including protection against ultraviolet radiation, antimicrobial activities, and flower pigmentation together with anthocyanins. They are of agronomical and economical importance because the major off-taste component in rapeseed protein isolates is a flavonol derivative, which limits rapeseed protein use for human consumption. Flavonol production in Arabidopsis thaliana is mainly regulated by the subgroup 7 (SG7) R2R3-MYB transcription factors MYB11, MYB12, and MYB111. Recently, the SG19 MYBs MYB21, MYB24, and MYB57 were shown to regulate flavonol accumulation in pollen and stamens. The members of each subgroup are closely related, showing gene redundancy and tissue-specific expression in A. thaliana. However, the evolution of these flavonol regulators inside the Brassicaceae, especially inside the Brassiceae, which include the rapeseed crop species, is not fully understood. RESULTS: We studied the SG7 and SG19 MYBs in 44 species, including 31 species of the Brassicaceae, by phylogenetic analyses followed by synteny and gene expression analyses. Thereby we identified a deep MYB12 and MYB111 duplication inside the Brassicaceae, which likely occurred before the divergence of Brassiceae and Thelypodieae. These duplications of SG7 members were followed by the loss of MYB11 after the divergence of Eruca vesicaria from the remaining Brassiceae species. Similarly, MYB21 experienced duplication before the emergence of the Brassiceae tribe, where the gene loss of MYB24 is also proposed to have happened. The members of each subgroup revealed frequent overlapping spatio-temporal expression patterns in the Brassiceae member B. napus, which are assumed to compensate for the loss of MYB11 and MYB24 in the analysed tissues. CONCLUSIONS: We identified a duplication of MYB12, MYB111, and MYB21 inside the Brassicaceae and MYB11 and MYB24 gene loss inside the tribe Brassiceae. We propose that polyploidization events have shaped the evolution of the flavonol regulators in the Brassicaceae, especially in the Brassiceae.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Brassicaceae , Anthocyanins/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassicaceae/genetics , Brassicaceae/metabolism , Flavonols/metabolism , Gene Expression Regulation, Plant , Humans , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Ultraviolet Rays
7.
J Exp Bot ; 73(16): 5490-5502, 2022 09 12.
Article in English | MEDLINE | ID: mdl-35596728

ABSTRACT

Conical epidermal cells occur on the tepals (perianth organs, typically petals and/or sepals) of the majority of animal-pollinated angiosperms, where they play both visual and tactile roles in pollinator attraction, providing grip to foraging insects, and enhancing colour, temperature, and hydrophobicity. To explore the evolutionary history of conical epidermal cells in angiosperms, we surveyed the tepal epidermis in representative species of the ANA-grade families, the early-diverging successive sister lineages to all other extant angiosperms, and analysed the function of a candidate regulator of cell outgrowth from Cabomba caroliniana (Nymphaeales). We identified conical cells in at least two genera from different families (Austrobaileya and Cabomba). A single SBG9 MYB gene was isolated from C. caroliniana and found to induce strong differentiation of cellular outgrowth, including conical cells, when ectopically expressed in Nicotiana tabacum. Ontogenetic analysis and quantitative reverse transcription-PCR established that CcSBG9A1 is spatially and temporally expressed in a profile which correlates with a role in conical cell development. We conclude that conical or subconical cells on perianth organs are ancient within the angiosperms and most probably develop using a common genetic programme initiated by a SBG9 MYB transcription factor.


Subject(s)
Magnoliopsida , Animals , Epidermal Cells , Flowers , Genes, myb , Magnoliopsida/genetics , Phylogeny , Transcription Factors/genetics
8.
New Phytol ; 229(4): 2324-2338, 2021 02.
Article in English | MEDLINE | ID: mdl-33051877

ABSTRACT

The evolution of a lipid-based cuticle on aerial plant surfaces that protects against dehydration is considered a fundamental innovation in the colonization of the land by the green plants. However, key evolutionary steps in the early regulation of cuticle synthesis are still poorly understood, owing to limited studies in early-diverging land plant lineages. Here, we characterize a land plant specific subgroup 9 R2R3 MYB transcription factor MpSBG9, in the early-diverging land plant model Marchantia polymorpha, that is homologous to MIXTA proteins in vascular plants. The MpSBG9 functions as a key regulator of cuticle biosynthesis by preferentially regulating expression of orthologous genes for cutin formation, but not wax biosynthesis genes. The MpSBG9 also promotes the formation of papillate cells on the adaxial surface of M. polymorpha, which is consisitent with its canonical role in vascular plants. Our observations imply conserved MYB transcriptional regulation in the control of the cutin biosynthesis pathway as a core genetic network in the common ancestor of all land plants, implicating the land plant-specific MIXTA MYB lineage in the early origin and evolution of the cuticle.


Subject(s)
Embryophyta , Marchantia , Embryophyta/genetics , Embryophyta/metabolism , Gene Expression Regulation, Plant , Gene Regulatory Networks , Marchantia/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
9.
New Phytol ; 230(6): 2327-2336, 2021 06.
Article in English | MEDLINE | ID: mdl-33720398

ABSTRACT

Helicoidally arranged layers of cellulose microfibrils in plant cell walls can produce strong and vivid coloration in a wide range of species. Despite its significance, the morphogenesis of cell walls, whether reflective or not, is not fully understood. Here we show that by optically monitoring the reflectance of Pollia japonica fruits during development we can directly map structural changes of the cell wall on a scale of tens of nanometres. Visible-light reflectance spectra from individual living cells were measured throughout the fruit maturation process and compared with numerical models. Our analysis reveals that periodic spacing of the helicoidal architecture remains unchanged throughout fruit development, suggesting that interactions in the cell-wall polysaccharides lead to a fixed twisting angle of cellulose helicoids in the cell wall. By contrast with conventional electron microscopy, which requires analysis of different fixed specimens at different stages of development, the noninvasive optical technique we present allowed us to directly monitor live structural changes in biological photonic systems as they develop. This method therefore is applicable to investigations of photonic tissues in other organisms.


Subject(s)
Commelinaceae , Fruit , Cell Wall , Cellulose , Color , Microfibrils
10.
Faraday Discuss ; 223(0): 207-215, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32756677

ABSTRACT

Plants have various strategies to protect themselves from harmful light. An example of such a protective mechanism is the growth of epicuticular nanostructures, such as a layer of hair or wax crystals. Most nanostructures are optimised to screen UV radiation, as UV light is particularly damaging for cellular tissue. We find that, contrary to the commonly found UV reflectance, the epicuticular wax crystals on Tradescantia leaves reflect strongly in the higher visible wavelength regime. Thus, they give the leaves a golden shine. We characterize the optical appearance of Tradescantia pallida 'purpurea' leaves by angularly resolved spectroscopy and compare the results to finite difference time domain simulations. We find that it is the disordered assembly of the wax platelets that is the crucial parameter to obtain the observed reflected intensity increase for higher wavelengths.


Subject(s)
Plant Leaves/chemistry , Tradescantia/chemistry , Nanostructures/chemistry , Refractometry , Spectrum Analysis/methods , Ultraviolet Rays
11.
Anal Chem ; 91(13): 8326-8333, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31125203

ABSTRACT

The cuticle, the outermost layer covering the epidermis of most aerial organs of land plants, can have a heterogeneous composition even on the surface of the same organ. The main cuticle component is the polymer cutin which, depending on its chemical composition and structure, can have different biophysical properties. In this study, we introduce a new on-surface depolymerization method coupled to liquid extraction surface analysis (LESA) high-resolution mass spectrometry (HRMS) for a fast and spatially resolved chemical characterization of the cuticle of plant tissues. The method is composed of an on-surface saponification, followed by extraction with LESA using a chloroform-acetonitrile-water (49:49:2) mixture and direct HRMS detection. The method is also compared with LESA-HRMS without prior depolymerization for the analysis of the surface of the petals of Hibiscus richardsonii flowers, which have a ridged cuticle in the proximal region and a smooth cuticle in the distal region. We found that on-surface saponification is effective enough to depolymerize the cutin into its monomeric constituents thus allowing detection of compounds that were not otherwise accessible without a depolymerization step. The effect of the depolymerization procedure was more pronounced for the ridged/proximal cuticle, which is thicker and richer in epicuticular waxes compared with the cuticle in the smooth/distal region of the petal.


Subject(s)
Mass Spectrometry/methods , Membrane Lipids/chemistry , Plant Epidermis/chemistry , Flowers/chemistry , Hibiscus , Liquid-Liquid Extraction , Membrane Lipids/isolation & purification , Polymerization
12.
New Phytol ; 222(2): 1123-1138, 2019 04.
Article in English | MEDLINE | ID: mdl-30570752

ABSTRACT

Floral nectar spurs are widely considered a key innovation promoting diversification in angiosperms by means of pollinator shifts. We investigated the macroevolutionary dynamics of nectar spurs in the tribe Antirrhineae (Plantaginaceae), which contains 29 genera and 300-400 species (70-80% spurred). The effect of nectar spurs on diversification was tested, with special focus on Linaria, the genus with the highest number of species. We generated the most comprehensive phylogeny of Antirrhineae to date and reconstructed the evolution of nectar spurs. Diversification rate heterogeneity was investigated using trait-dependent and trait-independent methods, and accounting for taxonomic uncertainty. The association between changes in spur length and speciation was examined within Linaria using model testing and ancestral state reconstructions. We inferred four independent acquisitions of nectar spurs. Diversification analyses revealed that nectar spurs are loosely associated with increased diversification rates. Detected rate shifts were delayed by 5-15 Myr with respect to the acquisition of the trait. Active evolution of spur length, fitting a speciational model, was inferred in Linaria, which is consistent with a scenario of pollinator shifts driving diversification. Nectar spurs played a role in diversification of the Antirrhineae, but diversification dynamics can only be fully explained by the complex interaction of multiple biotic and abiotic factors.


Subject(s)
Biological Evolution , Flowers/anatomy & histology , Plant Nectar/physiology , Biodiversity , Linaria/anatomy & histology , Models, Biological , Phylogeny
13.
Syst Biol ; 67(2): 250-268, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-28973686

ABSTRACT

Disentangling species boundaries and phylogenetic relationships within recent evolutionary radiations is a challenge due to the poor morphological differentiation and low genetic divergence between species, frequently accompanied by phenotypic convergence, interspecific gene flow and incomplete lineage sorting. Here we employed a genotyping-by-sequencing (GBS) approach, in combination with morphometric analyses, to investigate a small western Mediterranean clade in the flowering plant genus Linaria that radiated in the Quaternary. After confirming the morphological and genetic distinctness of eight species, we evaluated the relative performances of concatenation and coalescent methods to resolve phylogenetic relationships. Specifically, we focused on assessing the robustness of both approaches to variations in the parameter used to estimate sequence homology (clustering threshold). Concatenation analyses suffered from strong systematic bias, as revealed by the high statistical support for multiple alternative topologies depending on clustering threshold values. By contrast, topologies produced by two coalescent-based methods (NJ$_{\mathrm{st}}$, SVDquartets) were robust to variations in the clustering threshold. Reticulate evolution may partly explain incongruences between NJ$_{\mathrm{st}}$, SVDquartets and concatenated trees. Integration of morphometric and coalescent-based phylogenetic results revealed (i) extensive morphological divergence associated with recent splits between geographically close or sympatric sister species and (ii) morphological convergence in geographically disjunct species. These patterns are particularly true for floral traits related to pollinator specialization, including nectar spur length, tube width and corolla color, suggesting pollinator-driven diversification. Given its relatively simple and inexpensive implementation, GBS is a promising technique for the phylogenetic and systematic study of recent radiations, but care must be taken to evaluate the robustness of results to variation of data assembly parameters.


Subject(s)
Classification/methods , Linaria/classification , Linaria/genetics , Plant Dispersal , Genotype , Sequence Analysis, DNA
14.
PLoS Pathog ; 12(8): e1005790, 2016 08.
Article in English | MEDLINE | ID: mdl-27513727

ABSTRACT

Plant volatiles play important roles in attraction of certain pollinators and in host location by herbivorous insects. Virus infection induces changes in plant volatile emission profiles, and this can make plants more attractive to insect herbivores, such as aphids, that act as viral vectors. However, it is unknown if virus-induced alterations in volatile production affect plant-pollinator interactions. We found that volatiles emitted by cucumber mosaic virus (CMV)-infected tomato (Solanum lycopersicum) and Arabidopsis thaliana plants altered the foraging behaviour of bumblebees (Bombus terrestris). Virus-induced quantitative and qualitative changes in blends of volatile organic compounds emitted by tomato plants were identified by gas chromatography-coupled mass spectrometry. Experiments with a CMV mutant unable to express the 2b RNA silencing suppressor protein and with Arabidopsis silencing mutants implicate microRNAs in regulating emission of pollinator-perceivable volatiles. In tomato, CMV infection made plants emit volatiles attractive to bumblebees. Bumblebees pollinate tomato by 'buzzing' (sonicating) the flowers, which releases pollen and enhances self-fertilization and seed production as well as pollen export. Without buzz-pollination, CMV infection decreased seed yield, but when flowers of mock-inoculated and CMV-infected plants were buzz-pollinated, the increased seed yield for CMV-infected plants was similar to that for mock-inoculated plants. Increased pollinator preference can potentially increase plant reproductive success in two ways: i) as female parents, by increasing the probability that ovules are fertilized; ii) as male parents, by increasing pollen export. Mathematical modeling suggested that over a wide range of conditions in the wild, these increases to the number of offspring of infected susceptible plants resulting from increased pollinator preference could outweigh underlying strong selection pressures favoring pathogen resistance, allowing genes for disease susceptibility to persist in plant populations. We speculate that enhanced pollinator service for infected individuals in wild plant populations might provide mutual benefits to the virus and its susceptible hosts.


Subject(s)
Arabidopsis/virology , Bees/physiology , Cucumovirus , Solanum lycopersicum/virology , Animals , Arabidopsis/physiology , Feeding Behavior/physiology , Gas Chromatography-Mass Spectrometry , Solanum lycopersicum/physiology , Models, Theoretical , Plant Diseases/virology , Pollination/physiology , Volatile Organic Compounds/metabolism
16.
New Phytol ; 219(3): 1124-1133, 2018 08.
Article in English | MEDLINE | ID: mdl-29856474

ABSTRACT

The petals of Eschscholzia californica (California poppy) are robust, pliable and typically coloured intensely orange or yellow owing to the presence of carotenoid pigments; they are also highly reflective at certain angles, producing a silky effect. To understand the mechanisms behind colour enhancement and reflectivity in California poppy, which represents a model species among early-divergent eudicots, we explored the development, ultrastructure, pigment composition and optical properties of the petals using light microscopy and electron microscopy combined with both spectrophotometry and goniometry. The elongated petal epidermal cells each possess a densely thickened prism-like ridge that is composed primarily of cell wall. The surface ridges strongly focus incident light onto the pigments, which are located in plastids at the cell base. Our results indicate that this highly unusual, deeply ridged surface structure not only enhances the deep colour response in this desert species, but also results in strongly angle-dependent 'silky' reflectivity that is anisotropic and mostly directional.


Subject(s)
Epidermal Cells/ultrastructure , Eschscholzia/cytology , Eschscholzia/ultrastructure , Flowers/cytology , Flowers/ultrastructure , Optical Phenomena , Plant Epidermis/cytology , Plant Epidermis/ultrastructure , Pigments, Biological/metabolism , Temperature
17.
Flora ; 244-245: 29-36, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30008511

ABSTRACT

At a microscopic scale, the shape and fine cell relief of the petal epidermal cells of a flower play a key role in its interaction with pollinators. In particular, conical shaped petal epidermal cells have been shown to have an important function in providing grip on the surface of bee-pollinated flowers and can influence bee visitation rates. Previous studies have explored interspecific variation in this trait within genera and families, but naturally-occurring intraspecific variation has not yet been comprehensively studied. Here, we investigate petal epidermal cell morphology in 32 genotypes of the crop Vicia faba, which has a yield highly dependent on pollinators. We hypothesise that conical cells may have been lost in some genotypes as a consequence of selective sweeps or genetic drift during breeding programmes. We find that 13% of our lines have a distribution of conical petal epidermal cells that deviates from that normally seen in V. faba flowers. These abnormal phenotypes were specific to the ad/abaxial side of petals, suggesting that these changes are the result of altered gene expression patterns rather than loss of gene function.

18.
New Phytol ; 216(2): 350-354, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27915467

ABSTRACT

Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly.


Subject(s)
Biophysical Phenomena , Insecta/physiology , Pollination/physiology , Animals , Flowers/anatomy & histology , Flowers/physiology , Light , Static Electricity
20.
Mol Biol Evol ; 31(8): 2042-60, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24758777

ABSTRACT

The plant hormone auxin is a conserved regulator of development which has been implicated in the generation of morphological novelty. PIN-FORMED1 (PIN) auxin efflux carriers are central to auxin function by regulating its distribution. PIN family members have divergent structures and cellular localizations, but the origin and evolutionary significance of this variation is unresolved. To characterize PIN family evolution, we have undertaken phylogenetic and structural analyses with a massive increase in taxon sampling over previous studies. Our phylogeny shows that following the divergence of the bryophyte and lycophyte lineages, two deep duplication events gave rise to three distinct lineages of PIN proteins in euphyllophytes. Subsequent independent radiations within each of these lineages were taxonomically asymmetric, giving rise to at least 21 clades of PIN proteins, of which 15 are revealed here for the first time. Although most PIN protein clades share a conserved canonical structure with a modular central loop domain, a small number of noncanonical clades dispersed across the phylogeny have highly divergent protein structure. We propose that PIN proteins underwent sub- and neofunctionalization with substantial modification to protein structure throughout plant evolution. Our results have important implications for plant evolution as they suggest that structurally divergent PIN proteins that arose in paralogous radiations contributed to the convergent evolution of organ systems in different land plant lineages.


Subject(s)
Indoleacetic Acids/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plants/classification , Plants/genetics , Amino Acid Sequence , Conserved Sequence , Evolution, Molecular , Gene Duplication , Models, Molecular , Multigene Family , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL