Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
PLoS One ; 13(5): e0197566, 2018.
Article in English | MEDLINE | ID: mdl-29787588

ABSTRACT

Since development of plasmid gene therapy for therapeutic angiogenesis by J. Isner this approach was an attractive option for ischemic diseases affecting large cohorts of patients. However, first placebo-controlled clinical trials showed its limited efficacy questioning further advance to practice. Thus, combined methods using delivery of several angiogenic factors got into spotlight as a way to improve outcomes. This study provides experimental proof of concept for a combined approach using simultaneous delivery of VEGF165 and HGF genes to alleviate consequences of myocardial infarction (MI). However, recent studies suggested that angiogenic growth factors have pleiotropic effects that may contribute to outcome so we expanded focus of our work to investigate potential mechanisms underlying action of VEGF165, HGF and their combination in MI. Briefly, Wistar rats underwent coronary artery ligation followed by injection of plasmid bearing VEGF165 or HGF or mixture of these. Histological assessment showed decreased size of post-MI fibrosis in both-VEGF165- or HGF-treated animals yet most prominent reduction of collagen deposition was observed in VEGF165+HGF group. Combined delivery group rats were the only to show significant increase of left ventricle (LV) wall thickness. We also found dilatation index improved in HGF or VEGF165+HGF treated animals. These effects were partially supported by our findings of c-kit+ cardiac stem cell number increase in all treated animals compared to negative control. Sporadic Ki-67+ mature cardiomyocytes were found in peri-infarct area throughout study groups with comparable effects of VEGF165, HGF and their combination. Assessment of vascular density in peri-infarct area showed efficacy of both-VEGF165 and HGF while combination of growth factors showed maximum increase of CD31+ capillary density. To our surprise arteriogenic response was limited in HGF-treated animals while VEGF165 showed potent positive influence on a-SMA+ blood vessel density. The latter hinted to evaluate infiltration of monocytes as they are known to modulate arteriogenic response in myocardium. We found that monocyte infiltration was driven by VEGF165 and reduced by HGF resulting in alleviation of VEGF-stimulated monocyte taxis after combined delivery of these 2 factors. Changes of monocyte infiltration were concordant with a-SMA+ arteriole density so we tested influence of VEGF165 or HGF on endothelial cells (EC) that mediate angiogenesis and inflammatory response. In a series of in vitro experiments we found that VEGF165 and HGF regulate production of inflammatory chemokines by human EC. In particular MCP-1 levels changed after treatment by recombinant VEGF, HGF or their combination and were concordant with NF-κB activation and monocyte infiltration in corresponding groups in vivo. We also found that both-VEGF165 and HGF upregulated IL-8 production by EC while their combination showed additive type of response reaching peak values. These changes were HIF-2 dependent and siRNA-mediated knockdown of HIF-2α abolished effects of VEGF165 and HGF on IL-8 production. To conclude, our study supports combined gene therapy by VEGF165 and HGF to treat MI and highlights neglected role of pleiotropic effects of angiogenic growth factors that may define efficacy via regulation of inflammatory response and endothelial function.


Subject(s)
Genetic Therapy/methods , Hepatocyte Growth Factor/genetics , Hepatocyte Growth Factor/therapeutic use , Myocardial Infarction/therapy , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Proliferation , Chemokine CCL2/biosynthesis , Disease Models, Animal , Gene Expression , Hepatocyte Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Interleukin-8/biosynthesis , Male , Monocytes/metabolism , Monocytes/pathology , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NF-kappa B/metabolism , Neovascularization, Physiologic/genetics , Neovascularization, Physiologic/physiology , Plasmids/administration & dosage , Plasmids/genetics , Rats , Rats, Wistar , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/therapeutic use , Vascular Endothelial Growth Factor A/metabolism
3.
Stem Cell Res Ther ; 6: 204, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26503601

ABSTRACT

INTRODUCTION: Cell therapy using adipose-derived stromal cells (ADSC) is an intensively developing approach to promote angiogenesis and regeneration. Administration technique is crucial and among others minimal constructs - cell sheets (CS) have certain advantages. Delivery of CS allows transplantation of cells along with matrix proteins to facilitate engraftment. Cells' therapeutic potential can be also increased by expression of proangiogenic factors by viral transduction. In this work we report on therapeutic efficacy of CS from mouse ADSC transduced to express human vascular endothelial growth factor 165 a/a isoform (VEGF165), which showed potency to restore perfusion and protect tissue in a model of limb ischemia. METHODS: Mouse ADSC (mADSC) isolated from C57 male mice were expanded for CS formation (10(6)cells per CS). Constructs were transduced to express human VEGF165 by baculoviral (BV) system. CS were transplanted subcutaneously to mice with surgically induced limb ischemia and followed by laser Doppler perfusion measurements. At endpoint animals were sacrificed and skeletal muscle was evaluated for necrosis and vessel density; CS with underlying muscle was stained for apoptosis, proliferation, monocytes and blood vessels. RESULTS: Using BV system and sodium butyrate treatment we expressed human VEGF165 in mADSC (production of VEGF165 reached ≈ 25-27 ng/ml/10(5) cells) and optimized conditions to ensure cells' viability after transduction. Implantation of mock-transduced CS resulted in significant improvement of limb perfusion, increased capillary density and necrosis reduction at 2 weeks post-surgery compared to untreated animals. Additional improvement of blood flow and angiogenesis was observed after transplantation of VEGF165-expressing CS indicating enhanced therapeutic potential of genetically modified constructs. Moreover, we found delivery of mADSC as CS to be superior to equivalent dose of suspended cells in terms of perfusion and angiogenesis. Histology analysis of extracted CS detected limited proliferation and approximately 10 % prevalence of apoptosis in transplanted mADSC. Significant vascularization of CS and infiltration by monocytes were found in both - BV-transduced and control CS indicating graft and host interaction after transplantation. CONCLUSIONS: Delivery of ADSC by subcutaneous transplantation of CS is effective for stimulation of angiogenesis and tissue protection in limb ischemia with a potential for efficacy improvement by BV transduction to express VEGF165.


Subject(s)
Ischemia/therapy , Muscle, Skeletal/blood supply , Neovascularization, Physiologic , Stem Cell Transplantation , Vascular Endothelial Growth Factor A/biosynthesis , Animals , Apoptosis , Baculoviridae/genetics , Cell Proliferation , Cell Survival , Cells, Cultured , Hindlimb/blood supply , Male , Mice, Inbred C57BL , Microvessels/physiology , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Myositis/prevention & control , Necrosis/prevention & control , Regional Blood Flow , Subcutaneous Fat/pathology , Transduction, Genetic , Vascular Endothelial Growth Factor A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL