Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Nature ; 582(7810): 104-108, 2020 06.
Article in English | MEDLINE | ID: mdl-32427965

ABSTRACT

Malaria caused by Plasmodium falciparum remains the leading single-agent cause of mortality in children1, yet the promise of an effective vaccine has not been fulfilled. Here, using our previously described differential screening method to analyse the proteome of blood-stage P. falciparum parasites2, we identify P. falciparum glutamic-acid-rich protein (PfGARP) as a parasite antigen that is recognized by antibodies in the plasma of children who are relatively resistant-but not those who are susceptible-to malaria caused by P. falciparum. PfGARP is a parasite antigen of 80 kDa that is expressed on the exofacial surface of erythrocytes infected by early-to-late-trophozoite-stage parasites. We demonstrate that antibodies against PfGARP kill trophozoite-infected erythrocytes in culture by inducing programmed cell death in the parasites, and that vaccinating non-human primates with PfGARP partially protects against a challenge with P. falciparum. Furthermore, our longitudinal cohort studies showed that, compared to individuals who had naturally occurring anti-PfGARP antibodies, Tanzanian children without anti-PfGARP antibodies had a 2.5-fold-higher risk of severe malaria and Kenyan adolescents and adults without these antibodies had a twofold-higher parasite density. By killing trophozoite-infected erythrocytes, PfGARP could synergize with other vaccines that target parasite invasion of hepatocytes or the invasion of and egress from erythrocytes.


Subject(s)
Apoptosis/immunology , Intercellular Signaling Peptides and Proteins/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Parasites/immunology , Plasmodium falciparum/cytology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Aotidae/immunology , Aotidae/parasitology , Caspases/metabolism , Child , Cohort Studies , DNA, Protozoan/chemistry , DNA, Protozoan/metabolism , Enzyme Activation , Erythrocytes/parasitology , Female , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Kenya , Malaria Vaccines/immunology , Malaria, Falciparum/parasitology , Male , Mice , Parasites/cytology , Parasites/growth & development , Plasmodium falciparum/growth & development , Protozoan Proteins/chemistry , Tanzania , Trophozoites/cytology , Trophozoites/growth & development , Trophozoites/immunology , Vacuoles/immunology
2.
Antimicrob Agents Chemother ; 66(1): e0132021, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34606334

ABSTRACT

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 (pfk13) gene. Here, we carried out in vitro selection over a 1-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Subject(s)
Antimalarials , Artemisinins , BTB-POZ Domain , Protozoan Proteins , Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics
3.
PLoS Pathog ; 16(4): e1008482, 2020 04.
Article in English | MEDLINE | ID: mdl-32310999

ABSTRACT

The emergence of artemisinin (ART) resistance in Plasmodium falciparum intra-erythrocytic parasites has led to increasing treatment failure rates with first-line ART-based combination therapies in Southeast Asia. Decreased parasite susceptibility is caused by K13 mutations, which are associated clinically with delayed parasite clearance in patients and in vitro with an enhanced ability of ring-stage parasites to survive brief exposure to the active ART metabolite dihydroartemisinin. Herein, we describe a panel of K13-specific monoclonal antibodies and gene-edited parasite lines co-expressing epitope-tagged versions of K13 in trans. By applying an analytical quantitative imaging pipeline, we localize K13 to the parasite endoplasmic reticulum, Rab-positive vesicles, and sites adjacent to cytostomes. These latter structures form at the parasite plasma membrane and traffic hemoglobin to the digestive vacuole wherein artemisinin-activating heme moieties are released. We also provide evidence of K13 partially localizing near the parasite mitochondria upon treatment with dihydroartemisinin. Immunoprecipitation data generated with K13-specific monoclonal antibodies identify multiple putative K13-associated proteins, including endoplasmic reticulum-resident molecules, mitochondrial proteins, and Rab GTPases, in both K13 mutant and wild-type isogenic lines. We also find that mutant K13-mediated resistance is reversed upon co-expression of wild-type or mutant K13. These data help define the biological properties of K13 and its role in mediating P. falciparum resistance to ART treatment.


Subject(s)
Drug Resistance/genetics , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/physiology , Humans , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 115(49): 12513-12518, 2018 12 04.
Article in English | MEDLINE | ID: mdl-30455312

ABSTRACT

Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Malaria, Falciparum/parasitology , Plasmodium falciparum/drug effects , Animals , Aotidae , Crosses, Genetic , Drug Resistance , Gene Expression Regulation , Mutation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
5.
PLoS Pathog ; 12(11): e1005976, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27832198

ABSTRACT

Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens.


Subject(s)
Drug Resistance/genetics , Genetic Fitness/genetics , Malaria, Falciparum/genetics , Membrane Transport Proteins/genetics , Plasmodium falciparum/physiology , Protozoan Proteins/genetics , Aminoquinolines/pharmacology , Antimalarials/pharmacology , Genotype , Humans , Mass Spectrometry , Microbial Sensitivity Tests , Mutation , Vacuoles/metabolism
6.
PLoS Pathog ; 11(5): e1004838, 2015 May.
Article in English | MEDLINE | ID: mdl-25941809

ABSTRACT

Understanding how a pathogen colonizes and adapts to a new host environment is a primary aim in studying emerging infectious diseases. Adaptive mutations arise among the thousands of variants generated during RNA virus infection, and identifying these variants will shed light onto how changes in tropism and species jumps can occur. Here, we adapted Coxsackie virus B3 to a highly permissive and less permissive environment. Using deep sequencing and bioinformatics, we identified a multi-step adaptive process to adaptation involving residues in the receptor footprints that correlated with receptor availability and with increase in virus fitness in an environment-specific manner. We show that adaptation occurs by selection of a dominant mutation followed by group selection of minority variants that together, confer the fitness increase observed in the population, rather than selection of a single dominant genotype.


Subject(s)
Adaptation, Biological/genetics , Enterovirus B, Human/genetics , Virus Replication/genetics , Adaptation, Biological/immunology , Cell Line , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/genetics , Phenotype
7.
PLoS Med ; 13(10): e1002138, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27701420

ABSTRACT

BACKGROUND: Artemisinin resistance observed in Southeast Asia threatens the continued use of artemisinin-based combination therapy in endemic countries. Additionally, the diversity of chemical mode of action in the global portfolio of marketed antimalarials is extremely limited. Addressing the urgent need for the development of new antimalarials, a chemical class of potent antimalarial compounds with a novel mode of action was recently identified. Herein, the preclinical characterization of one of these compounds, ACT-451840, conducted in partnership with academic and industrial groups is presented. METHOD AND FINDINGS: The properties of ACT-451840 are described, including its spectrum of activities against multiple life cycle stages of the human malaria parasite Plasmodium falciparum (asexual and sexual) and Plasmodium vivax (asexual) as well as oral in vivo efficacies in two murine malaria models that permit infection with the human and the rodent parasites P. falciparum and Plasmodium berghei, respectively. In vitro, ACT-451840 showed a 50% inhibition concentration of 0.4 nM (standard deviation [SD]: ± 0.0 nM) against the drug-sensitive P. falciparum NF54 strain. The 90% effective doses in the in vivo efficacy models were 3.7 mg/kg against P. falciparum (95% confidence interval: 3.3-4.9 mg/kg) and 13 mg/kg against P. berghei (95% confidence interval: 11-16 mg/kg). ACT-451840 potently prevented male gamete formation from the gametocyte stage with a 50% inhibition concentration of 5.89 nM (SD: ± 1.80 nM) and dose-dependently blocked oocyst development in the mosquito with a 50% inhibitory concentration of 30 nM (range: 23-39). The compound's preclinical safety profile is presented and is in line with the published results of the first-in-man study in healthy male participants, in whom ACT-451840 was well tolerated. Pharmacokinetic/pharmacodynamic (PK/PD) modeling was applied using efficacy in the murine models (defined either as antimalarial activity or as survival) in relation to area under the concentration versus time curve (AUC), maximum observed plasma concentration (Cmax), and time above a threshold concentration. The determination of the dose-efficacy relationship of ACT-451840 under curative conditions in rodent malaria models allowed prediction of the human efficacious exposure. CONCLUSION: The dual activity of ACT-451840 against asexual and sexual stages of P. falciparum and the activity on P. vivax have the potential to meet the specific profile of a target compound that could replace the fast-acting artemisinin component and harbor additional gametocytocidal activity and, thereby, transmission-blocking properties. The fast parasite reduction ratio (PRR) and gametocytocidal effect of ACT-451840 were recently also confirmed in a clinical proof-of-concept (POC) study.


Subject(s)
Acrylamides/pharmacology , Antimalarials/pharmacology , Piperazines/pharmacology , Plasmodium falciparum/drug effects , Plasmodium vivax/drug effects , Acrylamides/pharmacokinetics , Animals , Antimalarials/pharmacokinetics , Artemisinins/pharmacology , Dose-Response Relationship, Drug , Female , Humans , Mice , Mice, Inbred NOD , Microbial Sensitivity Tests , Multidrug Resistance-Associated Proteins/metabolism , Piperazines/pharmacokinetics , Plasmodium berghei/drug effects
8.
Proc Natl Acad Sci U S A ; 109(34): E2294-303, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22853955

ABSTRACT

Based on structural data of the RNA-dependent RNA polymerase, rational targeting of key residues, and screens for Coxsackievirus B3 fidelity variants, we isolated nine polymerase variants with mutator phenotypes, which allowed us to probe the effects of lowering fidelity on virus replication, mutability, and in vivo fitness. These mutator strains generate higher mutation frequencies than WT virus and are more sensitive to mutagenic treatments, and their purified polymerases present lower-fidelity profiles in an in vitro incorporation assay. Whereas these strains replicate with WT-like kinetics in tissue culture, in vivo infections reveal a strong correlation between mutation frequency and fitness. Variants with the highest mutation frequencies are less fit in vivo and fail to productively infect important target organs, such as the heart or pancreas. Furthermore, whereas WT virus is readily detectable in target organs 30 d after infection, some variants fail to successfully establish persistent infections. Our results show that, although mutator strains are sufficiently fit when grown in large population size, their fitness is greatly impacted when subjected to severe bottlenecking, which would occur during in vivo infection. The data indicate that, although RNA viruses have extreme mutation frequencies to maximize adaptability, nature has fine-tuned replication fidelity. Our work forges ground in showing that the mutability of RNA viruses does have an upper limit, where larger than natural genetic diversity is deleterious to virus survival.


Subject(s)
Enterovirus B, Human/genetics , Mutation , Animals , Base Sequence , Catalysis , Genetic Variation , Kinetics , Male , Mice , Mice, Inbred C3H , Models, Genetic , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenotype , RNA-Dependent RNA Polymerase/metabolism
9.
Blood ; 120(3): 572-80, 2012 Jul 19.
Article in English | MEDLINE | ID: mdl-22589473

ABSTRACT

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia/lymphoma and HTLV-1-associated myelopathy/tropical spastic paraparesis. In addition to blood transfusion and sexual transmission, HTLV-1 is transmitted mainly through prolonged breastfeeding, and such infection represents a major risk for the development of adult T-cell leukemia/lymphoma. Although HTLV-1-infected lymphocytes can be retrieved from maternal milk, the mechanisms of HTLV-1 transmission through the digestive tract remain unknown. In the present study, we assessed HTLV-1 transport across the epithelial barrier using an in vitro model. Our results show that the integrity of the epithelial barrier was maintained during coculture with HTLV-1-infected lymphocytes, because neither morphological nor functional alterations of the cell monolayer were observed. Enterocytes were not susceptible to HTLV-1 infection, but free infectious HTLV-1 virions could cross the epithelial barrier via a transcytosis mechanism. Such virions were able to infect productively human dendritic cells located beneath the epithelial barrier. Our data indicate that HTLV-1 crosses the tight epithelial barrier without disruption or infection of the epithelium to further infect target cells such as dendritic cells. The present study provides the first data pertaining to the mode of HTLV-1 transport across a tight epithelial barrier, as can occur during mother-to-child HTLV-1 transmission during breastfeeding.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/virology , HTLV-I Infections/metabolism , Human T-lymphotropic virus 1/metabolism , Transcytosis/physiology , Virion/metabolism , Caco-2 Cells , Coculture Techniques , Dendritic Cells/metabolism , Enterocytes/cytology , Enterocytes/metabolism , Enterocytes/virology , Epithelial Cells/cytology , Epithelial Cells/metabolism , Epithelial Cells/virology , HEK293 Cells , HT29 Cells , HTLV-I Infections/transmission , HTLV-I Infections/virology , Humans , Microscopy, Electron, Transmission , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , T-Lymphocytes/virology , Tight Junctions/metabolism , Tight Junctions/ultrastructure , Tight Junctions/virology
10.
J Virol ; 86(5): 2869-73, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22190724

ABSTRACT

The ability to extinguish a viral population of fixed reproductive capacity by causing small changes in the mutation rate is referred to as lethal mutagenesis and is a corollary of population genetics theory. Here we show that coxsackievirus B3 (CVB3) exhibits reduced mutational robustness relative to poliovirus, manifesting in enhanced sensitivity of CVB3 to lethal mutagens that is dependent on the size of the viral population. We suggest that mutational robustness may be a useful measure of the sensitivity of a virus to lethal mutagenesis.


Subject(s)
Enterovirus B, Human/genetics , Mutagenesis , Mutagens/toxicity , Poliovirus/genetics , Ribavirin/toxicity , Enterovirus B, Human/drug effects , Enterovirus B, Human/physiology , Mutation/drug effects , Mutation Rate , Poliovirus/drug effects , Poliovirus/physiology
11.
PLoS Pathog ; 6(10): e1001163, 2010 Oct 28.
Article in English | MEDLINE | ID: mdl-21060812

ABSTRACT

In a screen for RNA mutagen resistance, we isolated a high fidelity RNA dependent RNA polymerase (RdRp) variant of Coxsackie virus B3 (CVB3). Curiously, this variant A372V is also resistant to amiloride. We hypothesize that amiloride has a previously undescribed mutagenic activity. Indeed, amiloride compounds increase the mutation frequencies of CVB3 and poliovirus and high fidelity variants of both viruses are more resistant to this effect. We hypothesize that this mutagenic activity is mediated through alterations in intracellular ions such as Mg²+ and Mn²+, which in turn increase virus mutation frequency by affecting RdRp fidelity. Furthermore, we show that another amiloride-resistant RdRp variant, S299T, is completely resistant to this mutagenic activity and unaffected by changes in ion concentrations. We show that RdRp variants resist the mutagenic activity of amiloride via two different mechanisms: 1) increased fidelity that generates virus populations presenting lower basal mutation frequencies or 2) resisting changes in divalent cation concentrations that affect polymerase fidelity. Our results uncover a new antiviral approach based on mutagenesis.


Subject(s)
Amiloride/adverse effects , DNA-Directed RNA Polymerases/metabolism , Mutagenesis/drug effects , RNA/genetics , Transcription, Genetic/drug effects , Amiloride/analogs & derivatives , Amiloride/pharmacology , Animals , Antiviral Agents/adverse effects , Antiviral Agents/pharmacology , Base Sequence , Chlorocebus aethiops , Enterovirus/genetics , Genetic Variation/drug effects , HeLa Cells , Humans , Mutagens/pharmacology , RNA/metabolism , RNA, Viral/drug effects , RNA, Viral/genetics , Templates, Genetic , Transcription, Genetic/genetics , Vero Cells
12.
Nat Commun ; 13(1): 5746, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180431

ABSTRACT

Diverse compounds target the Plasmodium falciparum Na+ pump PfATP4, with cipargamin and (+)-SJ733 the most clinically-advanced. In a recent clinical trial for cipargamin, recrudescent parasites emerged, with most having a G358S mutation in PfATP4. Here, we show that PfATP4G358S parasites can withstand micromolar concentrations of cipargamin and (+)-SJ733, while remaining susceptible to antimalarials that do not target PfATP4. The G358S mutation in PfATP4, and the equivalent mutation in Toxoplasma gondii ATP4, decrease the sensitivity of ATP4 to inhibition by cipargamin and (+)-SJ733, thereby protecting parasites from disruption of Na+ regulation. The G358S mutation reduces the affinity of PfATP4 for Na+ and is associated with an increase in the parasite's resting cytosolic [Na+]. However, no defect in parasite growth or transmissibility is observed. Our findings suggest that PfATP4 inhibitors in clinical development should be tested against PfATP4G358S parasites, and that their combination with unrelated antimalarials may mitigate against resistance development.


Subject(s)
Antimalarials , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Calcium-Transporting ATPases , Erythrocytes/parasitology , Humans , Indoles , Ions , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum , Sodium , Spiro Compounds
13.
Cell Chem Biol ; 29(5): 824-839.e6, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34233174

ABSTRACT

Widespread Plasmodium falciparum resistance to first-line antimalarials underscores the vital need to develop compounds with novel modes of action and identify new druggable targets. Here, we profile five compounds that potently inhibit P. falciparum asexual blood stages. Resistance selection studies with three carboxamide-containing compounds, confirmed by gene editing and conditional knockdowns, identify point mutations in the parasite transporter ABCI3 as the primary mediator of resistance. Selection studies with imidazopyridine or quinoline-carboxamide compounds also yield changes in ABCI3, this time through gene amplification. Imidazopyridine mode of action is attributed to inhibition of heme detoxification, as evidenced by cellular accumulation and heme fractionation assays. For the copy-number variation-selecting imidazopyridine and quinoline-carboxamide compounds, we find that resistance, manifesting as a biphasic concentration-response curve, can independently be mediated by mutations in the chloroquine resistance transporter PfCRT. These studies reveal the interconnectedness of P. falciparum transporters in overcoming drug pressure in different parasite strains.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Parasites , Quinolines , ATP-Binding Cassette Transporters/genetics , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Heme , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Membrane Transport Proteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Quinolines/pharmacology
14.
Nat Commun ; 12(1): 530, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33483501

ABSTRACT

The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/genetics , Erythrocytes/metabolism , Mutation , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Atovaquone/pharmacology , Cell Cycle Checkpoints/genetics , Erythrocytes/parasitology , Gene Expression Profiling/methods , Humans , Metabolomics/methods , Mitochondria/genetics , Mitochondria/metabolism , Models, Genetic , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Proteomics/methods , Protozoan Proteins/genetics , Protozoan Proteins/metabolism
15.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279219

ABSTRACT

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/drug effects , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Africa , Antimalarials/pharmacology , Asia , Cambodia , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Molecular Epidemiology
16.
Sci Transl Med ; 13(603)2021 07 21.
Article in English | MEDLINE | ID: mdl-34290058

ABSTRACT

The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Endocytosis , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
17.
Nat Commun ; 11(1): 4813, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968076

ABSTRACT

Artemisinins have revolutionized the treatment of Plasmodium falciparum malaria; however, resistance threatens to undermine global control efforts. To broadly explore artemisinin susceptibility in apicomplexan parasites, we employ genome-scale CRISPR screens recently developed for Toxoplasma gondii to discover sensitizing and desensitizing mutations. Using a sublethal concentration of dihydroartemisinin (DHA), we uncover the putative transporter Tmem14c whose disruption increases DHA susceptibility. Screens performed under high doses of DHA provide evidence that mitochondrial metabolism can modulate resistance. We show that disrupting a top candidate from the screens, the mitochondrial protease DegP2, lowers porphyrin levels and decreases DHA susceptibility, without significantly altering parasite fitness in culture. Deleting the homologous gene in P. falciparum, PfDegP, similarly lowers heme levels and DHA susceptibility. These results expose the vulnerability of heme metabolism to genetic perturbations that can lead to increased survival in the presence of DHA.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Genetic Testing/methods , Heme/genetics , Heme/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques , Humans , Malaria, Falciparum/drug therapy , Membrane Transport Proteins/metabolism , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Toxoplasma/drug effects , Toxoplasma/genetics
18.
Cell Chem Biol ; 27(2): 143-157.e5, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31978322

ABSTRACT

Salinipostin A (Sal A) is a potent antiplasmodial marine natural product with an undefined mechanism of action. Using a Sal A-derived activity-based probe, we identify its targets in the Plasmodium falciparum parasite. All of the identified proteins contain α/ß serine hydrolase domains and several are essential for parasite growth. One of the essential targets displays a high degree of homology to human monoacylglycerol lipase (MAGL) and is able to process lipid esters including a MAGL acylglyceride substrate. This Sal A target is inhibited by the anti-obesity drug Orlistat, which disrupts lipid metabolism. Resistance selections yielded parasites that showed only minor reductions in sensitivity and that acquired mutations in a PRELI domain-containing protein linked to drug resistance in Toxoplasma gondii. This inability to evolve efficient resistance mechanisms combined with the non-essentiality of human homologs makes the serine hydrolases identified here promising antimalarial targets.


Subject(s)
Antimalarials/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Hydrolases/metabolism , Lipid Metabolism/drug effects , Protozoan Proteins/metabolism , Antimalarials/chemistry , Antimalarials/metabolism , Antimalarials/therapeutic use , Biological Products/chemical synthesis , Biological Products/pharmacology , Biological Products/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Click Chemistry , Drug Resistance/drug effects , Humans , Hydrolases/antagonists & inhibitors , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Monoacylglycerol Lipases/antagonists & inhibitors , Monoacylglycerol Lipases/genetics , Monoacylglycerol Lipases/metabolism , Orlistat/chemistry , Orlistat/metabolism , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics
19.
Nat Commun ; 11(1): 1780, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286267

ABSTRACT

A promising new compound class for treating human malaria is the imidazolopiperazines (IZP) class. IZP compounds KAF156 (Ganaplacide) and GNF179 are effective against Plasmodium symptomatic asexual blood-stage infections, and are able to prevent transmission and block infection in animal models. But despite the identification of resistance mechanisms in P. falciparum, the mode of action of IZPs remains unknown. To investigate, we here combine in vitro evolution and genome analysis in Saccharomyces cerevisiae with molecular, metabolomic, and chemogenomic methods in P. falciparum. Our findings reveal that IZP-resistant S. cerevisiae clones carry mutations in genes involved in Endoplasmic Reticulum (ER)-based lipid homeostasis and autophagy. In Plasmodium, IZPs inhibit protein trafficking, block the establishment of new permeation pathways, and cause ER expansion. Our data highlight a mechanism for blocking parasite development that is distinct from those of standard compounds used to treat malaria, and demonstrate the potential of IZPs for studying ER-dependent protein processing.


Subject(s)
Antimalarials/pharmacology , Plasmodium falciparum/drug effects , Chromatography, High Pressure Liquid , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Inhibitory Concentration 50 , Mass Spectrometry , Protozoan Proteins/metabolism , Pyrazoles/pharmacology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Secretory Pathway/drug effects
20.
Science ; 359(6372): 191-199, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29326268

ABSTRACT

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite.


Subject(s)
Antimalarials/pharmacology , Drug Resistance/genetics , Genome, Protozoan , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Activation, Metabolic , Alleles , DNA Copy Number Variations , Directed Molecular Evolution , Drug Resistance, Multiple/genetics , Genes, Protozoan , Metabolomics , Mutation , Plasmodium falciparum/growth & development , Selection, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL