Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Biol Chem ; 291(49): 25516-25528, 2016 Dec 02.
Article in English | MEDLINE | ID: mdl-27780869

ABSTRACT

URI (unconventional prefoldin RPB5 interactor protein) is an unconventional prefoldin, RNA polymerase II interactor that functions as a transcriptional repressor and is part of a larger nuclear protein complex. The components of this complex and the mechanism of transcriptional repression have not been characterized. Here we show that KAP1 (KRAB-associated protein 1) and the protein phosphatase PP2A interact with URI. Mechanistically, we show that KAP1 phosphorylation is decreased following recruitment of PP2A by URI. We functionally characterize the novel URI-KAP1-PP2A complex, demonstrating a role of URI in retrotransposon repression, a key function previously demonstrated for the KAP1-SETDB1 complex. Microarray analysis of annotated transposons revealed a selective increase in the transcription of LINE-1 and L1PA2 retroelements upon knockdown of URI. These data unveil a new nuclear function of URI and identify a novel post-transcriptional regulation of KAP1 protein that may have important implications in reactivation of transposable elements in prostate cancer cells.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Multiprotein Complexes/metabolism , Neoplasm Proteins/metabolism , Prostatic Neoplasms/metabolism , Protein Phosphatase 2/metabolism , Repressor Proteins/metabolism , Cell Line, Tumor , Humans , Intracellular Signaling Peptides and Proteins/genetics , Male , Multiprotein Complexes/genetics , Neoplasm Proteins/genetics , Phosphorylation/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Phosphatase 2/genetics , Repressor Proteins/genetics , Retroelements , Tripartite Motif-Containing Protein 28
2.
Genome Res ; 21(10): 1720-7, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21890680

ABSTRACT

Translocations are a common class of chromosomal aberrations and can cause disease by physically disrupting genes or altering their regulatory environment. Some translocations, apparently balanced at the microscopic level, include deletions, duplications, insertions, or inversions at the molecular level. Traditionally, chromosomal rearrangements have been investigated with a conventional banded karyotype followed by arduous positional cloning projects. More recently, molecular cytogenetic approaches using fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH), or whole-genome SNP genotyping together with molecular methods such as inverse PCR and quantitative PCR have allowed more precise evaluation of the breakpoints. These methods suffer, however, from being experimentally intensive and time-consuming and of less than single base pair resolution. Here we describe targeted breakpoint capture followed by next-generation sequencing (TBCS) as a new approach to the general problem of determining the precise structural characterization of translocation breakpoints and related chromosomal aberrations. We tested this approach in three patients with complex chromosomal translocations: The first had craniofacial abnormalities and an apparently balanced t(2;3)(p15;q12) translocation; the second has cleidocranial dysplasia (OMIM 119600) associated with a t(2;6)(q22;p12.3) translocation and a breakpoint in RUNX2 on chromosome 6p; and the third has acampomelic campomelic dysplasia (OMIM 114290) associated with a t(5;17)(q23.2;q24) translocation, with a breakpoint upstream of SOX9 on chromosome 17q. Preliminary studies indicated complex rearrangements in patients 1 and 3 with a total of 10 predicted breakpoints in the three patients. By using TBCS, we quickly and precisely defined eight of the 10 breakpoints.


Subject(s)
Chromosomes, Human , High-Throughput Nucleotide Sequencing/methods , Translocation, Genetic , Adult , Base Sequence , Campomelic Dysplasia/genetics , Chromosome Breakpoints , Chromosome Mapping , Cleidocranial Dysplasia/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Craniofacial Abnormalities/genetics , Female , Humans , Male , Molecular Sequence Data , Pedigree , SOX9 Transcription Factor/genetics
3.
BMC Genomics ; 14: 869, 2013 Dec 10.
Article in English | MEDLINE | ID: mdl-24325565

ABSTRACT

BACKGROUND: Although transposable element (TE) derived DNA accounts for more than half of mammalian genomes and initiates a significant proportion of RNA transcripts, high throughput methods are rarely leveraged specifically to detect expression from interspersed repeats. RESULTS: To characterize the contribution of transposons to mammalian transcriptomes, we developed a custom microarray platform with probes covering known human and mouse transposons in both sense and antisense orientations. We termed this platform the "TE-array" and profiled TE repeat expression in a panel of normal mouse tissues. Validation with nanoString® and RNAseq technologies demonstrated that TE-array is an effective method. Our data show that TE transcription occurs preferentially from the sense strand and is regulated in highly tissue-specific patterns. CONCLUSIONS: Our results are consistent with the hypothesis that transposon RNAs frequently originate within genomic TE units and do not primarily accumulate as a consequence of random 'read-through' from gene promoters. Moreover, we find TE expression is highly dependent on the tissue context. This suggests that TE expression may be related to tissue-specific chromatin states or cellular phenotypes. We anticipate that TE-array will provide a scalable method to characterize transposable element RNAs.


Subject(s)
DNA Transposable Elements , Genomics/methods , Oligonucleotide Array Sequence Analysis/methods , Transcription, Genetic , Animals , Cell Line , Female , Gene Expression , Gene Expression Profiling/methods , Gene Expression Regulation , Humans , Male , Mice , Oligonucleotide Array Sequence Analysis/standards , Organ Specificity/genetics , Reproducibility of Results , Transfection
4.
Mob DNA ; 7: 20, 2016.
Article in English | MEDLINE | ID: mdl-27807467

ABSTRACT

BACKGROUND: The National Cancer Institute-60 (NCI-60) cell lines are among the most widely used models of human cancer. They provide a platform to integrate DNA sequence information, epigenetic data, RNA and protein expression, and pharmacologic susceptibilities in studies of cancer cell biology. Genome-wide studies of the complete panel have included exome sequencing, karyotyping, and copy number analyses but have not targeted repetitive sequences. Interspersed repeats derived from mobile DNAs are a significant source of heritable genetic variation, and insertions of active elements can occur somatically in malignancy. METHOD: We used Transposon Insertion Profiling by microarray (TIP-chip) to map Long INterspersed Element-1 (LINE-1, L1) and Alu Short INterspersed Element (SINE) insertions in cancer genes in NCI-60 cells. We focused this discovery effort on annotated Cancer Gene Index loci. RESULTS: We catalogued a total of 749 and 2,100 loci corresponding to candidate LINE-1 and Alu insertion sites, respectively. As expected, these numbers encompass previously known insertions, polymorphisms shared in unrelated tumor cell lines, as well as unique, potentially tumor-specific insertions. We also conducted association analyses relating individual insertions to a variety of cellular phenotypes. CONCLUSIONS: These data provide a resource for investigators with interests in specific cancer gene loci or mobile element insertion effects more broadly. Our data underscore that significant genetic variation in cancer genomes is owed to LINE-1 and Alu retrotransposons. Our findings also indicate that as large numbers of cancer genomes become available, it will be possible to associate individual transposable element insertion variants with molecular and phenotypic features of these malignancies.

SELECTION OF CITATIONS
SEARCH DETAIL