Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 120(34): e2301301120, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37585469

ABSTRACT

The auditory organ of Corti is comprised of only two major cell types-the mechanosensory hair cells and their associated supporting cells-both specified from a single pool of prosensory progenitors in the cochlear duct. Here, we show that competence to respond to Atoh1, a transcriptional master regulator necessary and sufficient for induction of mechanosensory hair cells, is established in the prosensory progenitors between E12.0 and 13.5. The transition to the competent state is rapid and is associated with extensive remodeling of the epigenetic landscape controlled by the SoxC group of transcription factors. Conditional loss of Sox4 and Sox11-the two homologous family members transiently expressed in the inner ear at the time of competence establishment-blocks the ability of prosensory progenitors to differentiate as hair cells. Mechanistically, we show that Sox4 binds to and establishes accessibility of early sensory lineage-specific regulatory elements, including ones associated with Atoh1 and its direct downstream targets. Consistent with these observations, overexpression of Sox4 or Sox11 prior to developmental establishment of competence precociously induces hair cell differentiation in the cochlear progenitors. Further, reintroducing Sox4 or Sox11 expression restores the ability of postnatal supporting cells to differentiate as hair cells in vitro and in vivo. Our findings demonstrate the pivotal role of SoxC family members as agents of epigenetic and transcriptional changes necessary for establishing competence for sensory receptor differentiation in the inner ear.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , SOXC Transcription Factors , Animals , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cochlea/metabolism , Hair Cells, Auditory/metabolism , Cell Differentiation , Transcription Factors/metabolism , Epigenesis, Genetic , Organ of Corti , Gene Expression Regulation, Developmental , Mammals/metabolism
2.
Proc Natl Acad Sci U S A ; 119(28): e2206113119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867764

ABSTRACT

The Hippo signaling pathway acts as a brake on regeneration in many tissues. This cascade of kinases culminates in the phosphorylation of the transcriptional cofactors Yap and Taz, whose concentration in the nucleus consequently remains low. Various types of cellular signals can reduce phosphorylation, however, resulting in the accumulation of Yap and Taz in the nucleus and subsequently in mitosis. We earlier identified a small molecule, TRULI, that blocks the final kinases in the pathway, Lats1 and Lats2, and thus elicits proliferation of several cell types that are ordinarily postmitotic and aids regeneration in mammals. In the present study, we present the results of chemical modification of the original compound and demonstrate that a derivative, TDI-011536, is an effective blocker of Lats kinases inĀ vitro at nanomolar concentrations. The compound fosters extensive proliferation in retinal organoids derived from human induced pluripotent stem cells. Intraperitoneal administration of the substance to mice suppresses Yap phosphorylation for several hours and induces transcriptional activation of Yap target genes in the heart, liver, and skin. Moreover, the compound initiates the proliferation of cardiomyocytes in adult mice following cardiac cryolesions. After further chemical refinement, related compounds might prove useful in protective and regenerative therapies.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Regeneration , Animals , Cell Proliferation/drug effects , Heart/physiology , Humans , Induced Pluripotent Stem Cells , Liver Regeneration/drug effects , Liver Regeneration/genetics , Liver Regeneration/physiology , Mice , Organoids/physiology , Phosphorylation , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Regeneration/drug effects , Regeneration/genetics , Retina/physiology , Skin Physiological Phenomena/drug effects , Skin Physiological Phenomena/genetics , Transcription, Genetic/drug effects , Transcriptional Activation/drug effects , YAP-Signaling Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 117(24): 13552-13561, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32482884

ABSTRACT

Precise control of organ growth and patterning is executed through a balanced regulation of progenitor self-renewal and differentiation. In the auditory sensory epithelium-the organ of Corti-progenitor cells exit the cell cycle in a coordinated wave between E12.5 and E14.5 before the initiation of sensory receptor cell differentiation, making it a unique system for studying the molecular mechanisms controlling the switch between proliferation and differentiation. Here we identify the Yap/Tead complex as a key regulator of the self-renewal gene network in organ of Corti progenitor cells. We show that Tead transcription factors bind directly to the putative regulatory elements of many stemness- and cell cycle-related genes. We also show that the Tead coactivator protein, Yap, is degraded specifically in the Sox2-positive domain of the cochlear duct, resulting in down-regulation of Tead gene targets. Further, conditional loss of the Yap gene in the inner ear results in the formation of significantly smaller auditory and vestibular sensory epithelia, while conditional overexpression of a constitutively active version of Yap, Yap5SA, is sufficient to prevent cell cycle exit and to prolong sensory tissue growth. We also show that viral gene delivery of Yap5SA in the postnatal inner ear sensory epithelia in vivo drives cell cycle reentry after hair cell loss. Taken together, these data highlight the key role of the Yap/Tead transcription factor complex in maintaining inner ear progenitors during development, and suggest new strategies to induce sensory cell regeneration.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Cycle Proteins/metabolism , Cell Self Renewal , Organ of Corti/embryology , Organ of Corti/metabolism , Stem Cells/cytology , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Cycle , Cell Cycle Proteins/genetics , Cell Differentiation , Gene Expression Regulation, Developmental , Hair Cells, Auditory , Mice , Organ of Corti/cytology , Protein Binding , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Stem Cells/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins
4.
Proc Natl Acad Sci U S A ; 112(45): 14066-71, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504244

ABSTRACT

Hair cells, the mechanosensory receptors of the inner ear, underlie the senses of hearing and balance. Adult mammals cannot adequately replenish lost hair cells, whose loss often results in deafness or balance disorders. To determine the molecular basis of this deficiency, we investigated the development of a murine vestibular organ, the utricle. Here we show that two members of the SoxC family of transcription factors, Sox4 and Sox11, are down-regulated after the epoch of hair cell development. Conditional ablation of SoxC genes in vivo results in stunted sensory organs of the inner ear and loss of hair cells. Enhanced expression of SoxC genes in vitro conversely restores supporting cell proliferation and the production of new hair cells in adult sensory epithelia. These results imply that SoxC genes govern hair cell production and thus advance these genes as targets for the restoration of hearing and balance.


Subject(s)
Ear, Inner/embryology , Gene Expression Regulation, Developmental/physiology , Hair Cells, Auditory/physiology , Morphogenesis/physiology , SOXC Transcription Factors/physiology , Animals , Base Sequence , DNA Primers/genetics , Immunohistochemistry , In Situ Hybridization , Mice , Microscopy, Confocal , Molecular Sequence Data , Saccule and Utricle/anatomy & histology , Sequence Analysis, RNA
5.
Cell Stem Cell ; 31(6): 921-939.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38692273

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.


Subject(s)
Nephrons , Organoids , Animals , Organoids/cytology , Organoids/metabolism , Humans , Nephrons/cytology , Mice , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Podocytes/metabolism , Podocytes/cytology , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Models, Biological , Gene Editing
6.
Sci Data ; 11(1): 416, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653806

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, of which there are two types organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains 5-15 thousand terminally differentiated hair cells, and their survival is essential for hearing as they do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. Machine learning can be used to automate the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, rat, guinea pig, pig, primate, and human cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 107,000 hair cells which have been identified and annotated as either inner or outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair-cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to give other hearing research groups the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.


Subject(s)
Cochlea , Animals , Mice , Guinea Pigs , Humans , Rats , Swine , Hair Cells, Auditory , Microscopy, Fluorescence , Machine Learning
7.
J Vis Exp ; (201)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38009731

ABSTRACT

This protocol describes how to obtain high-quality retinal cryosections in larger animals, such as rabbits. After enucleation, the eye is briefly immersed in the fixative. Then, the cornea and iris are removed and the eye is left overnight for additional fixation at 4 Ā°C. Following fixation, the lens is removed. The eye is then placed in a cryomold and filled with an embedding medium. By removing the lens, the embedding medium has better access to the vitreous and leads to better retinal stability. Importantly, the eye should be incubated in embedding medium overnight to allow complete infiltration throughout the vitreous. Following overnight incubation, the eye is frozen on dry ice and sectioned. Whole retinal sections may be obtained for use in immunohistochemistry. Standard staining protocols may be utilized to study the localization of antigens within the retinal tissue. Adherence to this protocol results in high-quality retinal cryosections that may be used in any experiment utilizing immunohistochemistry.


Subject(s)
Eye , Lens, Crystalline , Animals , Rabbits , Retina/surgery , Cornea , Iris , Immunohistochemistry
8.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37293038

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here we report manipulation of p38 and YAP activity creates a synthetic niche that allows the long-term clonal expansion of primary mouse and human NPCs, and induced NPCs (iNPCs) from human pluripotent stem cells. Cultured iNPCs resemble closely primary human NPCs, generating nephron organoids with abundant distal convoluted tubule cells, which are not observed in published kidney organoids. The synthetic niche reprograms differentiated nephron cells into NPC state, recapitulating the plasticity of developing nephron in vivo. Scalability and ease of genome-editing in the cultured NPCs allow for genome-wide CRISPR screening, identifying novel genes associated with kidney development and disease. A rapid, efficient, and scalable organoid model for polycystic kidney disease was derived directly from genome-edited NPCs, and validated in drug screen. These technological platforms have broad applications to kidney development, disease, plasticity, and regeneration.

9.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693382

ABSTRACT

Our sense of hearing is mediated by cochlear hair cells, localized within the sensory epithelium called the organ of Corti. There are two types of hair cells in the cochlea, which are organized in one row of inner hair cells and three rows of outer hair cells. Each cochlea contains a few thousands of hair cells, and their survival is essential for our perception of sound because they are terminally differentiated and do not regenerate after insult. It is often desirable in hearing research to quantify the number of hair cells within cochlear samples, in both pathological conditions, and in response to treatment. However, the sheer number of cells along the cochlea makes manual quantification impractical. Machine learning can be used to overcome this challenge by automating the quantification process but requires a vast and diverse dataset for effective training. In this study, we present a large collection of annotated cochlear hair-cell datasets, labeled with commonly used hair-cell markers and imaged using various fluorescence microscopy techniques. The collection includes samples from mouse, human, pig and guinea pig cochlear tissue, from normal conditions and following in-vivo and in-vitro ototoxic drug application. The dataset includes over 90'000 hair cells, all of which have been manually identified and annotated as one of two cell types: inner hair cells and outer hair cells. This dataset is the result of a collaborative effort from multiple laboratories and has been carefully curated to represent a variety of imaging techniques. With suggested usage parameters and a well-described annotation procedure, this collection can facilitate the development of generalizable cochlear hair cell detection models or serve as a starting point for fine-tuning models for other analysis tasks. By providing this dataset, we aim to supply other groups within the hearing research community with the opportunity to develop their own tools with which to analyze cochlear imaging data more fully, accurately, and with greater ease.

10.
Elife ; 112022 04 22.
Article in English | MEDLINE | ID: mdl-35451959

ABSTRACT

The Hippo pathway, a highly conserved signaling cascade that functions as an integrator of molecular signals and biophysical states, ultimately impinges upon the transcription coactivator Yes-associated protein 1 (YAP). Hippo-YAP signaling has been shown to play key roles both at the early embryonic stages of implantation and gastrulation, and later during neurogenesis. To explore YAP's potential role in neurulation, we used self-organizing neuruloids grown from human embryonic stem cells on micropatterned substrates. We identified YAP activation as a key lineage determinant, first between neuronal ectoderm and nonneuronal ectoderm, and later between epidermis and neural crest, indicating that YAP activity can enhance the effect of BMP4 stimulation and therefore affect ectodermal specification at this developmental stage. Because aberrant Hippo-YAP signaling has been implicated in the pathology of Huntington's Disease (HD), we used isogenic mutant neuruloids to explore the relationship between signaling and the disease. We found that HD neuruloids demonstrate ectopic activation of gene targets of YAP and that pharmacological reduction of YAP's transcriptional activity can partially rescue the HD phenotype.


Subject(s)
Ectoderm , Huntington Disease , YAP-Signaling Proteins , Cell Cycle Proteins/metabolism , Ectoderm/metabolism , Humans , Neurogenesis , Neurulation , Signal Transduction/genetics , YAP-Signaling Proteins/genetics
11.
Nat Commun ; 12(1): 3100, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035288

ABSTRACT

Hippo signaling is an evolutionarily conserved pathway that restricts growth and regeneration predominantly by suppressing the activity of the transcriptional coactivator Yap. Using a high-throughput phenotypic screen, we identified a potent and non-toxic activator of Yap. In vitro kinase assays show that the compound acts as an ATP-competitive inhibitor of Lats kinases-the core enzymes in Hippo signaling. The substance prevents Yap phosphorylation and induces proliferation of supporting cells in the murine inner ear, murine cardiomyocytes, and human MĆ¼ller glia in retinal organoids. RNA sequencing indicates that the inhibitor reversibly activates the expression of transcriptional Yap targets: upon withdrawal, a subset of supporting-cell progeny exits the cell cycle and upregulates genes characteristic of sensory hair cells. Our results suggest that the pharmacological inhibition of Lats kinases may promote initial stages of the proliferative regeneration of hair cells, a process thought to be permanently suppressed in the adult mammalian inner ear.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation/drug effects , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Tumor Suppressor Proteins/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/genetics , Ependymoglial Cells/cytology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , HEK293 Cells , Hair Cells, Auditory, Inner/cytology , Hair Cells, Auditory, Inner/drug effects , Hair Cells, Auditory, Inner/metabolism , Humans , Mice, Knockout , Mice, Transgenic , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Tumor Suppressor Proteins/metabolism , YAP-Signaling Proteins
12.
Histochem Cell Biol ; 133(5): 567-76, 2010 May.
Article in English | MEDLINE | ID: mdl-20336308

ABSTRACT

The ability of dermal papilla (DP) cells to induce hair growth was reported in many studies. However, early stages of hair follicle development and signals that govern this process are poorly understood. Therefore, an in vitro model may be a convenient system to study epithelial-mesenchymal interactions and early stages of epidermal morphogenesis, especially in humans. To investigate the role of DP cells in epidermal morphogenesis we modified the method of isolation of DP cells from hair follicle of human scalp and developed the three-dimensional model of epidermal morphogenesis. Isolated DP cells were able to differentiate in adipogenic and osteogenic directions and retained activity of alkaline phosphatase (AP) for seven passages in culture. DP cells were able to induce tubule-like structures in three-dimensional model in vitro and to reorganize collagen matrix. Prolonged cultivation of DP cells has been a big problem because of the loss of hair follicle-inducing ability and growth activity after several passages. To solve this problem we immortalized DP cells by the transfection of the human telomerase reverse transcriptase cDNA (hTERT). Immortalized DP-hTERT cells retained AP activity and demonstrated low ability to osteogenic differentiation. The conditioned medium collected from actively proliferated cells as well as DP-hTERT cells themselves were capable to induce tubulogenesis after prolonged keratinocyte cultivation.


Subject(s)
Dermis/cytology , Hair Follicle/cytology , Hair Follicle/embryology , Keratinocytes/cytology , Morphogenesis/physiology , Adipocytes/cytology , Adipocytes/metabolism , Alkaline Phosphatase/metabolism , Cell Communication/physiology , Cell Culture Techniques , Cell Differentiation/physiology , Cell Line, Transformed , Cell Proliferation , Cell Shape , Cells, Cultured , Coculture Techniques , Collagen/metabolism , Extracellular Matrix/metabolism , Humans , Keratin-10/metabolism , Keratin-14/metabolism , Keratin-19/metabolism , Osteoblasts/metabolism , Osteonectin/metabolism , Osteopontin/metabolism , Telomerase/genetics , Transfection
13.
J Vis Exp ; (136)2018 06 01.
Article in English | MEDLINE | ID: mdl-29912206

ABSTRACT

The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.


Subject(s)
Ear, Inner/metabolism , Hair Cells, Auditory/metabolism , Vestibule, Labyrinth/metabolism , Animals , Ear, Inner/cytology , Hair Cells, Auditory/cytology , Mice , Vestibule, Labyrinth/cytology
14.
Elife ; 62017 07 25.
Article in English | MEDLINE | ID: mdl-28742024

ABSTRACT

Dysfunctions of hearing and balance are often irreversible in mammals owing to the inability of cells in the inner ear to proliferate and replace lost sensory receptors. To determine the molecular basis of this deficiency we have investigated the dynamics of growth and cellular proliferation in a murine vestibular organ, the utricle. Based on this analysis, we have created a theoretical model that captures the key features of the organ's morphogenesis. Our experimental data and model demonstrate that an elastic force opposes growth of the utricular sensory epithelium during development, confines cellular proliferation to the organ's periphery, and eventually arrests its growth. We find that an increase in cellular density and the subsequent degradation of the transcriptional cofactor Yap underlie this process. A reduction in mechanical constraints results in accumulation and nuclear translocation of Yap, which triggers proliferation and restores the utricle's growth; interfering with Yap's activity reverses this effect.


Subject(s)
Elasticity , Epithelium/embryology , Epithelium/growth & development , Morphogenesis , Saccule and Utricle/embryology , Saccule and Utricle/growth & development , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Mice , Models, Theoretical , Phosphoproteins/metabolism , YAP-Signaling Proteins
15.
PLoS One ; 10(1): e0116892, 2015.
Article in English | MEDLINE | ID: mdl-25607935

ABSTRACT

Dermal Papillae (DP) is a unique population of mesenchymal cells that was shown to regulate hair follicle formation and growth cycle. During development most DP cells are derived from mesoderm, however, functionally equivalent DP cells of cephalic hairs originate from Neural Crest (NC). Here we directed human embryonic stem cells (hESCs) to generate first NC cells and then hair-inducing DP-like cells in culture. We showed that hESC-derived DP-like cells (hESC-DPs) express markers typically found in adult human DP cells (e.g., p-75, nestin, versican, SMA, alkaline phosphatase) and are able to induce hair follicle formation when transplanted under the skin of immunodeficient NUDE mice. Engineered to express GFP, hESC-derived DP-like cells incorporate into DP of newly formed hair follicles and express appropriate markers. We demonstrated that BMP signaling is critical for hESC-DP derivation since BMP inhibitor dorsomorphin completely eliminated hair-inducing activity from hESC-DP cultures. DP cells were proposed as the cell-based treatment for hair loss diseases. Unfortunately human DP cells are not suitable for this purpose because they cannot be obtained in necessary amounts and rapidly loose their ability to induce hair follicle formation when cultured. In this context derivation of functional hESC-DP cells capable of inducing a robust hair growth for the first time shown here can become an important finding for the biomedical science.


Subject(s)
Biomarkers/metabolism , Hair Follicle/growth & development , Human Embryonic Stem Cells/cytology , Human Embryonic Stem Cells/transplantation , Neural Crest/cytology , Animals , Cell Differentiation , Cells, Cultured , Hair Follicle/cytology , Hair Follicle/drug effects , Hair Follicle/metabolism , Human Embryonic Stem Cells/metabolism , Humans , Mesoderm/cytology , Mesoderm/metabolism , Mice , Mice, Nude , Neural Crest/metabolism , Pyrazoles/pharmacology , Pyrimidines/pharmacology
16.
Cell Stem Cell ; 8(5): 538-51, 2011 May 06.
Article in English | MEDLINE | ID: mdl-21549328

ABSTRACT

The transcription factor SOX2 is widely known to play a critical role in the central nervous system; however, its role in peripheral neurogenesis remains poorly understood. We recently developed an hESC-based model in which migratory cells undergo epithelial to mesenchymal transition (EMT) to acquire properties of neural crest (NC) cells. In this model, we found that migratory NC progenitors downregulate SOX2, but then start re-expressing SOX2 as they differentiate to form neurogenic dorsal root ganglion (DRG)-like clusters. SOX2 downregulation was sufficient to induce EMT and resulted in massive apoptosis when neuronal differentiation was induced. In vivo, downregulation of SOX2 in chick and mouse NC cells significantly reduced the numbers of neurons within DRG. We found that SOX2 binds directly to NGN1 and MASH1 promoters and is required for their expression. Our data suggest that SOX2 plays a key role for NGN1-dependent acquisition of neuronal fates in sensory ganglia.


Subject(s)
Embryonic Stem Cells/metabolism , Ganglia, Spinal/metabolism , Neurogenesis , SOXB1 Transcription Factors/metabolism , Sensory Receptor Cells/cytology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Count , Cell Movement , Chickens , Embryonic Stem Cells/cytology , Epithelial-Mesenchymal Transition , Ganglia, Spinal/cytology , Gene Expression Regulation, Developmental , Humans , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Crest/cytology , Neurogenesis/genetics , Organ Specificity , Protein Binding , SOXB1 Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL