Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Enzyme Microb Technol ; 48(1): 27-32, 2011 Jan 05.
Article in English | MEDLINE | ID: mdl-22112767

ABSTRACT

Two forms of Ruminococcus flavefaciens FD-1 endoglucanase B, a member of glycoside hydrolase family 44, one with only a catalytic domain and the other with a catalytic domain and a carbohydrate binding domain (CBM), were produced. Both forms hydrolyzed cellotetraose, cellopentaose, cellohexaose, carboxymethylcellulose (CMC), birchwood and larchwood xylan, xyloglucan, lichenan, and Avicel but not cellobiose, cellotriose, mannan, or pullulan. Addition of the CBM increased catalytic efficiencies on both CMC and birchwood xylan but not on xyloglucan, and it decreased rates of cellopentaose and cellohexaose hydrolysis. Catalytic efficiencies were much higher on xyloglucan than on other polysaccharides. Hydrolysis rates increased with increasing cellooligosaccharide chain length. Cellotetraose hydrolysis yielded only cellotriose and glucose. Hydrolysis of cellopentaose gave large amounts of cellotetraose and glucose, somewhat more of the former than of the latter, and much smaller amounts of cellobiose and cellotriose. Cellohexaose hydrolysis yielded much more cellotetraose than cellobiose and small amounts of glucose and cellotriose, along with a low and transient amount of cellopentaose.


Subject(s)
Biotechnology/methods , Carboxymethylcellulose Sodium/metabolism , Cellulase/metabolism , Glucans/metabolism , Glycoside Hydrolases/metabolism , Ruminococcus/enzymology , Xylans/metabolism , Carbohydrate Metabolism , Catalytic Domain , Cellulase/chemistry , Cellulase/genetics , Cellulose/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/classification , Glycoside Hydrolases/genetics , Kinetics , Ruminococcus/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL