Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Publication year range
1.
Antimicrob Agents Chemother ; 67(6): e0157422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37133382

ABSTRACT

The development of new combinations of antimalarial drugs is urgently needed to prevent the spread of parasites resistant to drugs in clinical use and contribute to the control and eradication of malaria. In this work, we evaluated a standardized humanized mouse model of erythrocyte asexual stages of Plasmodium falciparum (PfalcHuMouse) for the selection of optimal drug combinations. First, we showed that the replication of P. falciparum was robust and highly reproducible in the PfalcHuMouse model by retrospective analysis of historical data. Second, we compared the relative value of parasite clearance from blood, parasite regrowth after suboptimal treatment (recrudescence), and cure as variables of therapeutic response to measure the contributions of partner drugs to combinations in vivo. To address the comparison, we first formalized and validated the day of recrudescence (DoR) as a new variable and found that there was a log-linear relationship with the number of viable parasites per mouse. Then, using historical data on monotherapy and two small cohorts of PfalcHuMice evaluated with ferroquine plus artefenomel or piperaquine plus artefenomel, we found that only measurements of parasite killing (i.e., cure of mice) as a function of drug exposure in blood allowed direct estimation of the individual drug contribution to efficacy by using multivariate statistical modeling and intuitive graphic displays. Overall, the analysis of parasite killing in the PfalcHuMouse model is a unique and robust experimental in vivo tool to inform the selection of optimal combinations by pharmacometric pharmacokinetic and pharmacodynamic (PK/PD) modeling.


Subject(s)
Antimalarials , Malaria, Falciparum , Animals , Mice , Antimalarials/pharmacology , Antimalarials/therapeutic use , Plasmodium falciparum , Retrospective Studies , Peroxides , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drug Combinations
2.
J Infect Dis ; 225(6): 1062-1069, 2022 03 15.
Article in English | MEDLINE | ID: mdl-32479608

ABSTRACT

BACKGROUND: Interventions that effectively target Plasmodium vivax are critical for the future control and elimination of malaria. We conducted a P. vivax volunteer infection study to characterize the antimalarial activity of artefenomel, a new drug candidate. METHODS: Eight healthy, malaria-naive participants were intravenously inoculated with blood-stage P. vivax and subsequently received a single oral 200-mg dose of artefenomel. Blood samples were collected to monitor the development and clearance of parasitemia, and plasma artefenomel concentration. Mosquito feeding assays were conducted before artefenomel dosing to investigate parasite transmissibility. RESULTS: Initial parasite clearance occurred in all participants after artefenomel administration (log10 parasite reduction ratio over 48 hours, 1.67; parasite clearance half-life, 8.67 hours). Recrudescence occurred in 7 participants 11-14 days after dosing. A minimum inhibitory concentration of 0.62 ng/mL and minimum parasiticidal concentration that achieves 90% of maximum effect of 0.83 ng/mL were estimated, and a single 300-mg dose was predicted to clear 109 parasites per milliliter with 95% certainty. Gametocytemia developed in all participants and was cleared 4-8 days after dosing. At peak gametocytemia, 75% of participants were infectious to mosquitoes. CONCLUSIONS: The in vivo antimalarial activity of artefenomel supports its further clinical development as a treatment for P. vivax malaria. CLINICAL TRIALS REGISTRATION: NCT02573857.


Subject(s)
Antimalarials , Culicidae , Folic Acid Antagonists , Malaria, Falciparum , Malaria, Vivax , Parasites , Adamantane/analogs & derivatives , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Folic Acid Antagonists/pharmacology , Humans , Malaria, Falciparum/parasitology , Malaria, Vivax/drug therapy , Peroxides , Plasmodium falciparum , Plasmodium vivax
3.
Antimicrob Agents Chemother ; 66(11): e0055622, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36197116

ABSTRACT

The development and spread of drug-resistant phenotypes substantially threaten malaria control efforts. Combination therapies have the potential to minimize the risk of resistance development but require intensive preclinical studies to determine optimal combination and dosing regimens. To support the selection of new combinations, we developed a novel in vitro-in silico combination approach to help identify the pharmacodynamic interactions of the two antimalarial drugs in a combination which can be plugged into a pharmacokinetic/pharmacodynamic model built with human monotherapy parasitological data to predict the parasitological endpoints of the combination. This makes it possible to optimally select drug combinations and doses for the clinical development of antimalarials. With this assay, we successfully predicted the endpoints of two phase 2 clinical trials in patients with the artefenomel-piperaquine and artefenomel-ferroquine drug combinations. In addition, the predictive performance of our novel in vitro model was equivalent to that of the humanized mouse model outcome. Last, our more informative in vitro combination assay provided additional insights into the pharmacodynamic drug interactions compared to the in vivo systems, e.g., a concentration-dependent change in the maximum killing effect (Emax) and the concentration producing 50% of the killing maximum effect (EC50) of piperaquine or artefenomel or a directional reduction of the EC50 of ferroquine by artefenomel and a directional reduction of Emax of ferroquine by artefenomel. Overall, this novel in vitro-in silico-based technology will significantly improve and streamline the economic development of new drug combinations for malaria and potentially also in other therapeutic areas.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Humans , Animals , Mice , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Malaria/drug therapy , Drug Combinations , Plasmodium falciparum
4.
Antimicrob Agents Chemother ; 66(7): e0011422, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35727057

ABSTRACT

The rate at which parasitemia declines in a host after treatment with an antimalarial drug is a major metric for assessment of antimalarial drug activity in preclinical models and in early clinical trials. However, this metric does not distinguish between viable and nonviable parasites. Thus, enumeration of parasites may result in underestimation of drug activity for some compounds, potentially confounding its use as a metric for assessing antimalarial activity in vivo. Here, we report a study of the effect of artesunate on Plasmodium falciparum viability in humans and in mice. We first measured the drug effect in mice by estimating the decrease in parasite viability after treatment using two independent approaches to estimate viability. We demonstrate that, as previously reported in humans, parasite viability declines much faster after artesunate treatment than does the decline in parasitemia (termed parasite clearance). We also observed that artesunate kills parasites faster at higher concentrations, which is not discernible from the traditional parasite clearance curve and that each subsequent dose of artesunate maintains its killing effect. Furthermore, based on measures of parasite viability, we could accurately predict the in vivo recrudescence of infection. Finally, using pharmacometrics modeling, we show that the apparent differences in the antimalarial activity of artesunate in mice and humans are partly explained by differences in host removal of dead parasites in the two hosts. However, these differences, along with different pharmacokinetic profiles, do not fully account for the differences in activity. (This study has been registered with the Australian New Zealand Clinical Trials Registry under identifier ACTRN12617001394336.).


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Artemisinins/pharmacokinetics , Artemisinins/therapeutic use , Artesunate/pharmacology , Artesunate/therapeutic use , Australia , Humans , Malaria, Falciparum/drug therapy , Mice , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum
5.
Article in English | MEDLINE | ID: mdl-33526486

ABSTRACT

Ensuring continued success against malaria depends on a pipeline of new antimalarials. Antimalarial drug development utilizes preclinical murine and experimental human malaria infection studies to evaluate drug efficacy. A sequential approach is typically adapted, with results from each stage informing the design of the next stage of development. The validity of this approach depends on confidence that results from murine malarial studies predict the outcome of clinical trials in humans. Parasite clearance rates following treatment are key parameters of drug efficacy. To investigate the validity of forward predictions, we developed a suite of mathematical models to capture parasite growth and drug clearance along the drug development pathway and estimated parasite clearance rates. When comparing the three infection experiments, we identified different relationships of parasite clearance with dose and different maximum parasite clearance rates. In Plasmodium berghei-NMRI mouse infections, we estimated a maximum parasite clearance rate of 0.2 (1/h); in Plasmodium falciparum-SCID mouse infections, 0.05 (1/h); and in human volunteer infection studies with P. falciparum, we found a maximum parasite clearance rate of 0.12 (1/h) and 0.18 (1/h) after treatment with OZ439 and MMV048, respectively. Sensitivity analysis revealed that host-parasite driven processes account for up to 25% of variance in parasite clearance for medium-high doses of antimalarials. Although there are limitations in translating parasite clearance rates across these experiments, they provide insight into characterizing key parameters of drug action and dose response and assist in decision-making regarding dosage for further drug development.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Plasmodium berghei , Plasmodium falciparum
6.
J Antimicrob Chemother ; 76(9): 2325-2334, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34179977

ABSTRACT

BACKGROUND: The efficacy of artemisinin-based combination therapies (ACTs), the first-line treatments for uncomplicated falciparum malaria, has been declining in malaria-endemic countries due to the emergence of malaria parasites resistant to these compounds. Novel alternative therapies are needed urgently to prevent the likely surge in morbidity and mortality due to failing ACTs. OBJECTIVES: This study investigates the efficacy of the combination of two novel drugs, OZ439 and DSM265, using a biologically informed within-host mathematical model. METHODS: A within-host model was developed, which accounts for the differential killing of these compounds against different stages of the parasite's life cycle and accommodates the pharmacodynamic interaction between the drugs. Data of healthy volunteers infected with falciparum malaria collected from four trials (three that administered OZ439 and DSM265 alone, and the fourth a combination of OZ439 and DSM265) were analysed. Model parameters were estimated in a hierarchical Bayesian framework. RESULTS: The posterior predictive simulations of our model predicted that 800 mg of OZ439 combined with 450 mg of DSM265, which are within the safe and tolerable dose range, can provide above 90% cure rates 42 days after drug administration. CONCLUSIONS: Our results show that the combination of OZ439 and DSM265 can be a promising alternative to replace ACTs. Our model can be used to inform future Phase 2 and 3 clinical trials of OZ439/DSM265, fast-tracking the deployment of this combination therapy in the regions where ACTs are failing. The dosing regimens that are shown to be efficacious and within safe and tolerable limits are suggested for future investigations.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Pyrimidines/pharmacokinetics , Triazoles/pharmacokinetics , Antimalarials/therapeutic use , Bayes Theorem , Dose-Response Relationship, Drug , Drug Therapy, Combination , Humans , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
7.
Clin Infect Dis ; 71(10): e657-e664, 2020 12 17.
Article in English | MEDLINE | ID: mdl-32239164

ABSTRACT

BACKGROUND: MMV390048 is the first Plasmodium phosphatidylinositol 4-kinase inhibitor to reach clinical development as a new antimalarial. We aimed to characterize the safety, pharmacokinetics, and antimalarial activity of a tablet formulation of MMV390048. METHODS: A 2-part, phase 1 trial was conducted in healthy adults. Part 1 was a double-blind, randomized, placebo-controlled, single ascending dose study consisting of 3 cohorts (40, 80, 120 mg MMV390048). Part 2 was an open-label volunteer infection study using the Plasmodium falciparum induced blood-stage malaria model consisting of 2 cohorts (40 mg and 80 mg MMV390048). RESULTS: Twenty four subjects were enrolled in part 1 (n = 8 per cohort, randomized 3:1 MMV390048:placebo) and 15 subjects were enrolled in part 2 (40 mg [n = 7] and 80 mg [n = 8] cohorts). One subject was withdrawn from part 2 (80 mg cohort) before dosing and was not included in analyses. No serious or severe adverse events were attributed to MMV390048. The rate of parasite clearance was greater in subjects administered 80 mg compared to those administered 40 mg (clearance half-life 5.5 hours [95% confidence interval {CI}, 5.2-6.0 hours] vs 6.4 hours [95% CI, 6.0-6.9 hours]; P = .005). Pharmacokinetic/pharmacodynamic modeling estimated a minimum inhibitory concentration of 83 ng/mL and a minimal parasiticidal concentration that would achieve 90% of the maximum effect of 238 ng/mL, and predicted that a single 120-mg dose would achieve an adequate clinical and parasitological response with 92% certainty. CONCLUSIONS: The safety, pharmacokinetics, and pharmacodynamics of MMV390048 support its further development as a partner drug of a single-dose combination therapy for malaria. CLINICAL TRIALS REGISTRATION: NCT02783820 (part 1); NCT02783833 (part 2).


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum , 1-Phosphatidylinositol 4-Kinase , Adult , Aminopyridines , Antimalarials/adverse effects , Dose-Response Relationship, Drug , Double-Blind Method , Humans , Malaria, Falciparum/drug therapy , Plasmodium , Sulfones , Volunteers
8.
Int J Antimicrob Agents ; 64(1): 107196, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734217

ABSTRACT

With the spread of artemisinin resistance throughout Southeast Asia and now in Africa, the antimalarial drug pyronaridine is likely to become an increasingly important component of new antimalarial drug regimens. However, the antimalarial activity of pyronaridine in humans has not been completely characterised. This volunteer infection study aimed to determine the pharmacokinetic/pharmacodynamic (PK/PD) relationship of pyronaridine in malaria naïve adults. Volunteers were inoculated with Plasmodium falciparum-infected erythrocytes on day 0 and administered different single oral doses of pyronaridine on day 8. Parasitaemia and concentrations of pyronaridine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 47 ± 2. Outcomes were parasite clearance kinetics, PK and PK/PD parameters from modelling. Ten participants were inoculated and administered 360 mg (n = 4), 540 mg (n = 4) or 720 mg (n = 1) pyronaridine. One participant was withdrawn without receiving pyronaridine. The time to maximum pyronaridine concentration was 1-2 h, the elimination half-life was 8-9 d, and the parasite clearance half-life was approximately 5 h. Parasite regrowth occurred with 360 mg (4/4 participants) and 540 mg (2/4 participants). Key efficacy parameters including the minimum inhibitory concentration (5.5 ng/mL) and minimum parasiticidal concentration leading to 90% of maximum effect (MPC90: 8 ng/mL) were derived from the PK/PD model. Adverse events considered related to pyronaridine were predominantly mild to moderate gastrointestinal symptoms. There were no serious adverse events. Data obtained in this study will support the use of pyronaridine in new antimalarial combination therapies by informing partner drug selection and dosing considerations.


Subject(s)
Antimalarials , Healthy Volunteers , Malaria, Falciparum , Naphthyridines , Parasitemia , Plasmodium falciparum , Humans , Antimalarials/pharmacokinetics , Antimalarials/therapeutic use , Antimalarials/pharmacology , Antimalarials/administration & dosage , Naphthyridines/pharmacokinetics , Naphthyridines/therapeutic use , Naphthyridines/pharmacology , Naphthyridines/administration & dosage , Plasmodium falciparum/drug effects , Adult , Male , Young Adult , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Female , Parasitemia/drug therapy , Parasitemia/parasitology , Erythrocytes/drug effects , Erythrocytes/parasitology , Administration, Oral , Middle Aged , Treatment Outcome
9.
CPT Pharmacometrics Syst Pharmacol ; 12(1): 50-61, 2023 01.
Article in English | MEDLINE | ID: mdl-36412499

ABSTRACT

Chemoprophylactics are a vital tool in the fight against malaria. They can be used to protect populations at risk, such as children younger than the age of 5 in areas of seasonal malaria transmission or pregnant women. Currently approved chemoprophylactics all present challenges. There are either concerns about unacceptable adverse effects such as neuropsychiatric sequalae (mefloquine), risks of hemolysis in patients with G6PD deficiency (8-aminoquinolines such as tafenoquine), or cost and daily dosing (atovaquone-proguanil). Therefore, there is a need to develop new chemoprophylactic agents to provide more affordable therapies with better compliance through improving properties such as pharmacokinetics to allow weekly, preferably monthly, dosing. Here we present a pharmacokinetic-pharmacodynamic (PKPD) model constructed using DSM265 (a dihydroorotate dehydrogenase inhibitor with activity against the liver schizonts of malaria, therefore, a prophylaxis candidate). The PKPD model mimics the parasite lifecycle by describing parasite dynamics and drug activity during the liver and blood stages. A major challenge is the estimation of model parameters, as only blood-stage parasites can be observed once they have reached a threshold. By combining qualitative and quantitative knowledge about the parasite from various sources, it has been shown that it is possible to infer information about liver-stage growth and its initial infection level. Furthermore, by integrating clinical data, the killing effect of the drug on liver- and blood-stage parasites can be included in the PKPD model, and a clinical outcome can be predicted. Despite multiple challenges, the presented model has the potential to help translation from preclinical to late development for new chemoprophylactic candidates.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria , Child , Humans , Female , Pregnancy , Antimalarials/pharmacology , Antimalarials/therapeutic use , Malaria/drug therapy , Malaria/prevention & control , Glucosephosphate Dehydrogenase Deficiency/chemically induced , Glucosephosphate Dehydrogenase Deficiency/drug therapy , Enzyme Inhibitors , Liver
10.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-37009844

ABSTRACT

With artemisinin-resistant Plasmodium falciparum parasites emerging in Africa, the need for new antimalarial chemotypes is persistently high. The ideal pharmacodynamic parameters of a candidate drug are a rapid onset of action and a fast rate of parasite killing or clearance. To determine these parameters, it is essential to discriminate viable from nonviable parasites, which is complicated by the fact that viable parasites can be metabolically inactive, whilst dying parasites can still be metabolically active and morphologically unaffected. Standard growth inhibition assays, read out via microscopy or [3H] hypoxanthine incorporation, cannot reliably discriminate between viable and nonviable parasites. Conversely, the in vitro parasite reduction ratio (PRR) assay is able to measure viable parasites with high sensitivity. It provides valuable pharmacodynamic parameters, such as PRR, 99.9% parasite clearance time (PCT99.9%) and lag phase. Here we report the development of the PRR assay version 2 (V2), which comes with a shorter assay duration, optimized quality controls and an objective, automated analysis pipeline that systematically estimates PRR, PCT99.9% and lag time and returns meaningful secondary parameters such as the maximal killing rate of a drug (Emax) at the assayed concentration. These parameters can be fed directly into pharmacokinetic/pharmacodynamic models, hence aiding and standardizing lead selection, optimization, and dose prediction.

11.
CPT Pharmacometrics Syst Pharmacol ; 12(9): 1335-1346, 2023 09.
Article in English | MEDLINE | ID: mdl-37587640

ABSTRACT

As part of a collaboration between Medicines for Malaria Venture (MMV), Certara UK and Monash University, physiologically-based pharmacokinetic (PBPK) models were developed for 20 antimalarials, using data obtained from standardized in vitro assays and clinical studies within the literature. The models have been applied within antimalarial drug development at MMV for more than 5 years. During this time, a strategy for their impactful use has evolved. All models are described in the supplementary material and are available to researchers. Case studies are also presented, demonstrating real-world development and clinical applications, including the assessment of the drug-drug interaction liability between combination partners or with co-administered drugs. This work emphasizes the benefit of PBPK modeling for antimalarial drug development and decision making, and presents a strategy to integrate it into the research and development process. It also provides a repository of shared information to benefit the global health research community.


Subject(s)
Antimalarials , Humans , Drug Development , Research Design , Universities
12.
CPT Pharmacometrics Syst Pharmacol ; 11(4): 512-523, 2022 04.
Article in English | MEDLINE | ID: mdl-35199969

ABSTRACT

Simulation of combination therapies is challenging due to computational complexity. Either a simple model is used to simulate the response for many combinations of concentration to generate a response surface but parameter variability and uncertainty are neglected and the concentrations are constant-the link to the doses to be administered is difficult to make-or a population pharmacokinetic/pharmacodynamic model is used to predict the response to combination therapy in a clinical trial taking into account the time-varying concentration profile, interindividual variability (IIV), and parameter uncertainty but simulations are limited to only a few selected doses. We devised new algorithms to efficiently search for the combination doses that achieve a predefined efficacy target while taking into account the IIV and parameter uncertainty. The result of this method is a response surface of confidence levels, indicating for all dose combinations the likelihood of reaching the specified efficacy target. We highlight the importance to simulate across a population rather than focus on an individual. Finally, we provide examples of potential applications, such as informing experimental design.


Subject(s)
Algorithms , Research Design , Computer Simulation , Humans , Models, Biological , Probability , Uncertainty
13.
Am J Trop Med Hyg ; 107(4): 804-814, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36037868

ABSTRACT

Plasmodium falciparum sporozoite (PfSPZ) direct venous inoculation (DVI) using cryopreserved, infectious PfSPZ (PfSPZ Challenge [Sanaria, Rockville, Maryland]) is an established controlled human malaria infection model. However, to evaluate new chemical entities with potential blood-stage activity, more detailed data are needed on safety, tolerability, and parasite clearance kinetics for DVI of PfSPZ Challenge with established schizonticidal antimalarial drugs. This open-label, phase Ib study enrolled 16 malaria-naïve healthy adults in two cohorts (eight per cohort). Following DVI of 3,200 PfSPZ (NF54 strain), parasitemia was assessed by quantitative polymerase chain reaction (qPCR) from day 7. The approved antimalarial artemether-lumefantrine was administered at a qPCR-defined target parasitemia of ≥ 5,000 parasites/mL of blood. The intervention was generally well tolerated, with two grade 3 adverse events of neutropenia, and no serious adverse events. All 16 participants developed parasitemia after a mean of 9.7 days (95% CI 9.1-10.4) and a mean parasitemia level of 511 parasites/mL (95% CI 369-709). The median time to reach ≥ 5,000 parasites/mL was 11.5 days (95% CI 10.4-12.4; Kaplan-Meier), at that point the geometric mean (GM) parasitemia was 15,530 parasites/mL (95% CI 10,268-23,488). Artemether-lumefantrine was initiated at a GM of 12.1 days (95% CI 11.5-12.7), and a GM parasitemia of 6,101 parasites/mL (1,587-23,450). Mean parasite clearance time was 1.3 days (95% CI 0.9-2.1) and the mean log10 parasite reduction ratio over 48 hours was 3.6 (95% CI 3.4-3.7). This study supports the safety, tolerability, and feasibility of PfSPZ Challenge by DVI for evaluating the blood-stage activity of candidate antimalarial drugs.


Subject(s)
Antimalarials , Malaria , Parasites , Adult , Animals , Antimalarials/adverse effects , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/adverse effects , Humans , Malaria/drug therapy , Parasitemia/drug therapy , Parasitemia/parasitology , Plasmodium falciparum , Sporozoites
14.
Clin Transl Sci ; 14(2): 712-719, 2021 03.
Article in English | MEDLINE | ID: mdl-33326705

ABSTRACT

Volunteer infection studies using the induced blood stage malaria (IBSM) model have been shown to facilitate antimalarial drug development. Such studies have traditionally been undertaken in single-dose cohorts, as many as necessary to obtain the dose-response relationship. To enhance ethical and logistic aspects of such studies, and to reduce the number of cohorts needed to establish the dose-response relationship, we undertook a retrospective in silico analysis of previously accrued data to improve study design. A pharmacokinetic (PK)/pharmacodynamic (PD) model was developed from initial fictive-cohort data for OZ439 (mixing the data of the three single-dose cohorts as: n = 2 on 100 mg, 2 on 200 mg, and 4 on 500 mg). A three-compartment model described OZ439 PKs. Net growth of parasites was modeled using a Gompertz function and drug-induced parasite death using a Hill function. Parameter estimates for the PK and PD models were comparable for the multidose single-cohort vs. the pooled analysis of all cohorts. Simulations based on the multidose single-cohort design described the complete data from the original IBSM study. The novel design allows for the ascertainment of the PK/PD relationship early in the study, providing a basis for rational dose selection for subsequent cohorts and studies.


Subject(s)
Antimalarials/administration & dosage , Clinical Trials, Phase I as Topic , Malaria/drug therapy , Models, Biological , Plasmodium/drug effects , Antimalarials/pharmacokinetics , Cohort Studies , Computer Simulation , Dose-Response Relationship, Drug , Healthy Volunteers , Humans , Malaria/parasitology , Plasmodium/pathogenicity , Research Design , Retrospective Studies
15.
Sci Transl Med ; 13(603)2021 07 21.
Article in English | MEDLINE | ID: mdl-34290058

ABSTRACT

The emergence and spread of Plasmodium falciparum resistance to first-line antimalarials creates an imperative to identify and develop potent preclinical candidates with distinct modes of action. Here, we report the identification of MMV688533, an acylguanidine that was developed following a whole-cell screen with compounds known to hit high-value targets in human cells. MMV688533 displays fast parasite clearance in vitro and is not cross-resistant with known antimalarials. In a P. falciparum NSG mouse model, MMV688533 displays a long-lasting pharmacokinetic profile and excellent safety. Selection studies reveal a low propensity for resistance, with modest loss of potency mediated by point mutations in PfACG1 and PfEHD. These proteins are implicated in intracellular trafficking, lipid utilization, and endocytosis, suggesting interference with these pathways as a potential mode of action. This preclinical candidate may offer the potential for a single low-dose cure for malaria.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Parasites , Animals , Antimalarials/pharmacology , Antimalarials/therapeutic use , Endocytosis , Malaria/drug therapy , Malaria, Falciparum/drug therapy , Plasmodium falciparum
16.
Clin Pharmacol Ther ; 108(5): 1055-1066, 2020 11.
Article in English | MEDLINE | ID: mdl-32415986

ABSTRACT

Chloroquine has been used for the treatment of malaria for > 70 years; however, chloroquine pharmacokinetic (PK) and pharmacodynamic (PD) profile in Plasmodium vivax malaria is poorly understood. The objective of this study was to describe the PK/PD relationship of chloroquine and its major metabolite, desethylchloroquine, in a P. vivax volunteer infection study. We analyzed data from 24 healthy subjects who were inoculated with blood-stage P. vivax malaria and administered a standard treatment course of chloroquine. The PK of chloroquine and desethylchloroquine was described by a two-compartment model with first-order absorption and elimination. The relationship between plasma and whole blood concentrations of chloroquine and P. vivax parasitemia was characterized by a PK/PD delayed response model, where the equilibration half-lives were 32.7 hours (95% confidence interval (CI) 27.4-40.5) for plasma data and 24.1 hours (95% CI 19.0-32.7) for whole blood data. The estimated parasite multiplication rate was 17 folds per 48 hours (95% CI 14-20) and maximum parasite killing rate by chloroquine was 0.213 hour-1 (95% CI 0.196-0.230), translating to a parasite clearance half-life of 4.5 hours (95% CI 4.1-5.0) and a parasite reduction ratio of 400 every 48 hours (95% CI 320-500). This is the first study that characterized the PK/PD relationship between chloroquine plasma and whole blood concentrations and P. vivax clearance using a semimechanistic population PK/PD modeling. This PK/PD model can be used to optimize dosing scenarios and to identify optimal dosing regimens for chloroquine where resistance to chloroquine is increasing.


Subject(s)
Antimalarials/pharmacokinetics , Chloroquine/pharmacokinetics , Malaria, Vivax/drug therapy , Plasmodium vivax/drug effects , Administration, Oral , Adult , Antimalarials/administration & dosage , Antimalarials/blood , Biotransformation , Chloroquine/administration & dosage , Chloroquine/analogs & derivatives , Chloroquine/blood , Drug Dosage Calculations , Drug Resistance , Female , Humans , Malaria, Vivax/blood , Malaria, Vivax/diagnosis , Malaria, Vivax/parasitology , Male , Models, Biological , Parasite Load , Plasmodium vivax/growth & development , Treatment Outcome , Young Adult
17.
Sci Rep ; 10(1): 4410, 2020 03 10.
Article in English | MEDLINE | ID: mdl-32157151

ABSTRACT

Emerging drug resistance and high-attrition rates in early and late stage drug development necessitate accelerated development of antimalarial compounds. However, systematic and meaningful translation of drug efficacy and host-parasite dynamics between preclinical testing stages is missing. We developed an ensemble of mathematical within-host parasite growth and antimalarial action models, fitted to extensive data from four antimalarials with different modes of action, to assess host-parasite interactions in two preclinical drug testing systems of murine parasite P. berghei in mice, and human parasite P. falciparum in immune-deficient mice. We find properties of the host-parasite system, namely resource availability, parasite maturation and virulence, drive P. berghei dynamics and drug efficacy, whereas experimental constraints primarily influence P. falciparum infection and drug efficacy. Furthermore, uninvestigated parasite behavior such as dormancy influences parasite recrudescence following non-curative treatment and requires further investigation. Taken together, host-parasite interactions should be considered for meaningful translation of pharmacodynamic properties between murine systems and for predicting human efficacious treatment.


Subject(s)
Antiprotozoal Agents/pharmacology , Malaria, Falciparum/parasitology , Plasmodium berghei/physiology , Plasmodium falciparum/physiology , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/therapeutic use , Disease Models, Animal , Drug Development , Drug Resistance/drug effects , Host-Parasite Interactions , Humans , Malaria, Falciparum/drug therapy , Mice , Mice, SCID , Models, Theoretical , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects
18.
ACS Infect Dis ; 6(1): 3-13, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31808676

ABSTRACT

In May 2019, the Wellcome Centre for Anti-Infectives Research (WCAIR) at the University of Dundee, UK, held an international conference with the aim of discussing some key questions around discovering new medicines for infectious diseases and a particular focus on diseases affecting Low and Middle Income Countries. There is an urgent need for new drugs to treat most infectious diseases. We were keen to see if there were lessons that we could learn across different disease areas and between the preclinical and clinical phases with the aim of exploring how we can improve and speed up the drug discovery, translational, and clinical development processes. We started with an introductory session on the current situation and then worked backward from clinical development to combination therapy, pharmacokinetic/pharmacodynamic (PK/PD) studies, drug discovery pathways, and new starting points and targets. This Viewpoint aims to capture some of the learnings.


Subject(s)
Communicable Disease Control , Communicable Diseases/drug therapy , Congresses as Topic , Combined Modality Therapy , Communicable Diseases/epidemiology , Drug Discovery , Drug Evaluation, Preclinical , HIV Infections/drug therapy , Humans , Poverty , United Kingdom
19.
J Med Chem ; 62(23): 10816-10832, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31729873

ABSTRACT

Retinoic acid receptor-related orphan receptor gamma-t (RORγt) is considered to be the master transcription factor for the development of Th17 cells that produce proinflammatory cytokines such as IL-17A. Overproportionate Th17 cell abundance is associated with the pathogenesis of many inflammatory conditions including psoriasis. In a high-throughput fluorescence resonance energy transfer (FRET) screen, we identified compound 1 as a hit with promising lipophilic efficiency (LipE). Using structure-based drug design based on a number of X-ray cocrystal structures, we morphed this hit class into potent imidazoles, exemplified by compound 3. To improve the poor absorption, distribution, metabolism, and excretion (ADME) properties of neutral imidazoles, we extended our ligands with carboxylic acid substituents toward a polar, water-rich area of the protein. This highly lipophilicity-efficient modification ultimately led to the discovery of compound 14, a potent and selective inhibitor of RORγt with good ADME properties and excellent in vivo pharmacokinetics. This compound showed good efficacy in an in vivo delayed-type hypersensitivity pharmacology model in rats.


Subject(s)
Hypersensitivity, Delayed/drug therapy , Imidazoles/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Administration, Oral , Animals , Dose-Response Relationship, Drug , Drug Design , Female , Fluorescence Resonance Energy Transfer , Half-Life , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Male , Models, Molecular , Molecular Structure , Rats
20.
Lancet Infect Dis ; 18(8): 874-883, 2018 08.
Article in English | MEDLINE | ID: mdl-29909069

ABSTRACT

BACKGROUND: DSM265 is a novel, long-duration inhibitor of plasmodium dihydroorotate dehydrogenase (DHODH) with excellent selectivity over human DHODH and activity against blood and liver stages of Plasmodium falciparum. This study aimed to assess the efficacy of DSM265 in patients with P falciparum or Plasmodium vivax malaria infection. METHODS: This proof-of-concept, open-label, phase 2a study was conducted at the Asociación Civil Selva Amazónica in Iquitos, Peru. Patients aged 18-70 years, weighing 45-90 kg, who had clinical malaria (P falciparum or P vivax monoinfection) and fever within the previous 24 h were eligible. Exclusion criteria were clinical or laboratory signs of severe malaria, inability to take oral medicine, and use of other antimalarial treatment in the preceding 14 days. Patients were divided into cohorts of those with P falciparum (cohort a) or P vivax (cohort b) infection. Two initial cohorts received single oral doses of 400 mg DSM265. Patients were followed up for efficacy for 28 days and safety for 35 days. Further cohorts received escalated or de-escalated doses of DSM265, after safety and efficacy assessment of the initial dose. The primary endpoints were the proportion of patients achieving PCR-adjusted adequate clinical and parasitological response (ACPR) by day 14 for patients infected with P falciparum and the proportion of patients achieving a crude cure by day 14 for those infected with P vivax. Cohort success, the criteria for dose escalation, was defined as ACPR (P falciparum) or crude cure (P vivax) in at least 80% of patients in the cohort. The primary analysis was done in the intention-to-treat population (ITT) and the per-protocol population, and safety analyses were done in all patients who received the study drug. This study is registered at ClinicalTrials.gov (NCT02123290). FINDINGS: Between Jan 12, 2015, and Dec 2, 2015, 45 Peruvian patients (24 with P falciparum [cohort a] and 21 with P vivax [cohort b] infection) were sequentially enrolled. For patients with P falciparum malaria in the per-protocol population, all 11 (100%) in the 400 mg group and eight (80%) of ten in the 250 mg group achieved ACPR on day 14. In the ITT analysis, 11 (85%) of 13 in the 400 mg group and eight (73%) of 11 in the 250 mg group achieved ACPR at day 14. For the patients with P vivax malaria, the primary endpoint was not met. In the per-protocol analysis, none of four patients who had 400 mg, three (50%) of six who had 600 mg, and one (25%) of four who had 800 mg DSM265 achieved crude cure at day 14. In the ITT analysis, none of five in the 400 mg group, three (33%) of nine in the 600 mg group, and one (14%) of seven in the 800 mg group achieved crude cure at day 14. During the 28-day extended observation of P falciparum patients, a resistance-associated mutation in the gene encoding the DSM265 target DHODH was observed in two of four recurring patients. DSM265 was well tolerated. The most common adverse events were pyrexia (20 [44%] of 45) and headache (18 [40%] of 45), which are both common symptoms of malaria, and no patients had any treatment-related serious adverse events or adverse events leading to study discontinuation. INTERPRETATION: After a single dose of DSM265, P falciparum parasitaemia was rapidly cleared, whereas against P vivax, DSM265 showed less effective clearance kinetics. Its long duration of action provides the potential to prevent recurrence of P falciparum after treatment with a single dose, which should be further assessed in future combination studies. FUNDING: The Global Health Innovative Technology Fund, the Bill & Melinda Gates Foundation, the National Institutes of Health (R01 AI103058), the Wellcome Trust, and the UK Department of International Development.


Subject(s)
Antimalarials/administration & dosage , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Plasmodium falciparum/immunology , Pyrimidines/administration & dosage , Triazoles/administration & dosage , Adult , Cohort Studies , Dihydroorotate Dehydrogenase , Female , Humans , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Vivax/immunology , Malaria, Vivax/parasitology , Male , Oxidoreductases Acting on CH-CH Group Donors , Peru
SELECTION OF CITATIONS
SEARCH DETAIL