Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 16(7): 746-54, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26030024

ABSTRACT

During development, progenitor cells with binary potential give rise to daughter cells that have distinct functions. Heritable epigenetic mechanisms then lock in gene-expression programs that define lineage identity. Regulation of the gene encoding the T cell-specific coreceptor CD4 in helper and cytotoxic T cells exemplifies this process, with enhancer- and silencer-regulated establishment of epigenetic memory for stable gene expression and repression, respectively. Using a genetic screen, we identified the DNA-methylation machinery as essential for maintaining silencing of Cd4 in the cytotoxic lineage. Furthermore, we found a requirement for the proximal enhancer in mediating the removal of DNA-methylation marks from Cd4, which allowed stable expression of Cd4 in helper T cells. Our findings suggest that stage-specific methylation and demethylation events in Cd4 regulate its heritable expression in response to the distinct signals that dictate lineage 'choice' during T cell development.


Subject(s)
DNA Methylation/immunology , Gene Expression/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4 Antigens/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Cell Lineage/immunology , Cells, Cultured , Chromatin/genetics , Chromatin/immunology , Chromatin/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/immunology , DNA (Cytosine-5-)-Methyltransferases/metabolism , Flow Cytometry , HEK293 Cells , Humans , Mice, Knockout , Mice, Transgenic , RNA Interference/immunology , T-Lymphocytes, Cytotoxic/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , Transcription Factors/genetics , Transcription Factors/immunology , Transcription Factors/metabolism
2.
J Immunol ; 206(3): 505-514, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33361205

ABSTRACT

High concentrations of the damage-associated molecular patterns S100A8 and S100A9 are found in skin and serum from patients suffering from psoriasis, an IL-17-related disease. Notably, although the expression of these proteins correlates with psoriatic disease severity, the exact function of S100A8 and S100A9 in psoriasis pathogenesis remains unclear. In this study, we investigated the role of S100A8 and S100A9 in psoriasis-associated skin hyperplasia and immune responses using S100a8-/- and S100a9-/- mice in an imiquimod-induced model of psoriasis. We found that S100a8-/- and S100a9-/- psoriatic mice exhibit worsened clinical symptoms relative to wild-type mice and increased expression of S100A9 and S100A8 proteins in keratinocytes, respectively. In addition, the loss of S100A8 enhances proliferation of keratinocytes and disrupts keratinocyte differentiation. We further detected elevated production of IL-17A and -F from CD4+ T cells in the absence of S100A8 and S100A9, as well as increased infiltration of neutrophils in the skin. In addition, treatment with anti-IL-17A and -F was found to reduce psoriasis symptoms and skin hyperplasia in S100a8-/- and S100a9-/- mice. These data suggest that S100A8 and S100A9 regulate psoriasis by inhibiting production of IL-17A and -F, thereby, to our knowledge, providing new insights into their biological functions.


Subject(s)
Calgranulin A/metabolism , Calgranulin B/metabolism , Interleukin-17/metabolism , Psoriasis/metabolism , Psoriasis/pathology , Skin/pathology , Th17 Cells/immunology , Animals , Antibodies, Blocking/metabolism , Calgranulin A/genetics , Calgranulin B/genetics , Cells, Cultured , Disease Models, Animal , Humans , Hyperplasia , Imiquimod , Interleukin-17/immunology , Mice, Inbred C57BL , Mice, Knockout , Psoriasis/chemically induced
3.
Bioorg Med Chem ; 45: 116314, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34333393

ABSTRACT

A novel tumor suppressing agent was discovered against PC-3 prostate cancer cells from the screening of a 1,4-benzodiazepin-3-one library. In this study, 96 highly diversified 2,4,5-trisubstituted 1,4-benzodiazepin-3-one derivatives were prepared by a two-step approach using sequential Ugi multicomponent reaction and simultaneous deprotection and cyclization to afford pure compounds bearing a wide variety of substituents. The most promising compound showed a potent and selective antiproliferative activity against prostate cancer cell line PC-3 (GI50 = 10.2 µM), but had no effect on LNCAP, LAPC4 and DU145 cell lines. The compound was initially prepared as a mixture of two diastereomers and after their separation by HPLC, similar antiproliferative activities against PC-3 cells were observed for both diastereomers (2S,5S: GI50 = 10.8 µM and 2S,5R: GI50 = 7.0 µM). Additionally, both diastereomers showed comparable stability profiles after incubation with human liver microsomes. Finally, in vivo evaluation of the hit compound with the chick chorioallantoic membrane xenograft assay revealed a good toxicity profile and significant antitumor activity after intravenous injection.


Subject(s)
Antineoplastic Agents/pharmacology , Benzodiazepines/pharmacology , Prostatic Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzodiazepines/chemical synthesis , Benzodiazepines/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver/chemistry , Liver/metabolism , Male , Molecular Structure , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Structure-Activity Relationship , Tumor Cells, Cultured
4.
Int J Mol Sci ; 20(9)2019 May 08.
Article in English | MEDLINE | ID: mdl-31071912

ABSTRACT

Epithelial ovarian cancer (EOC) represents the most lethal gynecologic malignancy; a better understanding of the molecular mechanisms associated with EOC etiology could substantially improve EOC management. Aberrant O-glycosylation in cancer is attributed to alteration of N-acetylgalactosaminyltransferases (GalNAc-Ts). Reports suggest a genetic and functional redundancy between GalNAc-Ts, and our previous data are indicative of an induction of GALNT6 expression upon GALNT3 suppression in EOC cells. We performed single GALNT3 and double GALNT3/T6 suppression in EOC cells, using a combination of the CRISPR-Cas9 system and shRNA-mediated gene silencing. The effect of single GALNT3 and double GALNT3/T6 inhibition was monitored both in vitro (on EOC cells roliferation, migration, and invasion) and in vivo (on tumor formation and survival of experimental animals). We confirmed that GALNT3 gene ablation leads to strong and rather compensatory GALNT6 upregulation in EOC cells. Moreover, double GALNT3/T6 suppression was significantly associated with stronger inhibitory effects on EOC cell proliferation, migration, and invasion, and accordingly displayed a significant increase in animal survival rates compared with GALNT3-ablated and control (Ctrl) EOC cells. Our data suggest a possible functional redundancy of GalNAc-Ts (GALNT3 and T6) in EOC, with the perspective of using both these enzymes as novel EOC biomarkers and/or therapeutic targets.


Subject(s)
Carcinoma, Ovarian Epithelial/genetics , Cell Proliferation/genetics , N-Acetylgalactosaminyltransferases/genetics , Animals , CRISPR-Cas Systems/genetics , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Cell Movement/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Knockout Techniques , Glycosylation , Humans , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Ovary/pathology , RNA, Small Interfering/genetics , Xenograft Model Antitumor Assays , Polypeptide N-acetylgalactosaminyltransferase
5.
Pharmacol Res ; 128: 52-60, 2018 02.
Article in English | MEDLINE | ID: mdl-29287690

ABSTRACT

The aminosteroid derivative RM-133 is an effective anticancer molecule for which proof of concept has been achieved in several mouse xenograph models (HL-60, MCF-7, PANC-1 and OVCAR-3). To promote this new family of molecules toward a clinical phase 1 trial, the mechanism of action governing the anticancer properties of the representative candidate RM-133 needs to be characterized. In vitro experiments were first used to determine that RM-133 causes apoptosis in cancer cells. Then, using proteomic and transcriptomic experiments, RM-133 cytotoxicity was proven to be achieved via the endoplasmic reticulum (ER)-related apoptosis, which characterizes RM-133 as an endoplasmic reticulum stress aggravator (ERSA) anticancer drug. Furthermore, an shRNA-genome-wide screening has permitted to identify the steroidogenic acute regulator-related lipid transfer protein 5 (STARD5) as a major player in the RM-133 ER-related apoptosis mechanism, which was validated by an in vitro binding experiment. Altogether, the results presented herein suggest that RM-133 provokes a disturbance of cholesterol homeostasis via the implication of STARD5, which delivers an ERSA molecule to the ER. These results will be a springboard for RM-133 in its path toward clinical use.


Subject(s)
Androstenes/pharmacology , Antineoplastic Agents/pharmacology , Carrier Proteins/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum Stress , Adaptor Proteins, Vesicular Transport , Apoptosis/drug effects , Carrier Proteins/genetics , Cell Line, Tumor , Homeostasis/drug effects , Humans
6.
Mol Cell ; 36(2): 219-30, 2009 Oct 23.
Article in English | MEDLINE | ID: mdl-19854132

ABSTRACT

The RASSF1A tumor suppressor gene is epigenetically silenced in a variety of cancers. Here, we perform a genome-wide human shRNA screen and find that epigenetic silencing of RASSF1A requires the homeobox protein HOXB3. We show that HOXB3 binds to the DNA methyltransferase DNMT3B gene and increases its expression. DNMT3B, in turn, is recruited to the RASSF1A promoter, resulting in hypermethylation and silencing of RASSF1A expression. DNMT3B recruitment is facilitated through interactions with Polycomb repressor complex 2 and MYC, which is bound to the RASSF1A promoter. Mouse xenograft experiments indicate that the oncogenic activity of HOXB3 is due, at least in part, to epigenetic silencing of RASSF1A. Expression analysis in human lung adenocarcinoma samples reveals that RASSF1A silencing strongly correlates with overexpression of HOXB3 and DNMT3B. Analysis of human cancer cell lines indicates that the RASSF1A epigenetic silencing mechanism described here may be common in diverse cancer types.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Silencing , Homeodomain Proteins/metabolism , Tumor Suppressor Proteins/genetics , Animals , Cell Line, Tumor , Cell Proliferation , Down-Regulation/genetics , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Polycomb-Group Proteins , Promoter Regions, Genetic/genetics , Protein Binding , RNA, Small Interfering/metabolism , Repressor Proteins/metabolism , Tumor Suppressor Proteins/metabolism , DNA Methyltransferase 3B
7.
Kidney Int ; 90(3): 598-609, 2016 09.
Article in English | MEDLINE | ID: mdl-27470678

ABSTRACT

Medial vascular calcification is a common complication of chronic kidney disease (CKD). Although elevated inorganic phosphate stimulates vascular smooth muscle cell (VSMC) osteogenic transdifferentiation and calcification, the mechanisms involved in their calcification during CKD are not fully defined. Because hypoxic gene activation is linked to CKD and stimulates bone cell osteogenic differentiation, we used in vivo and in vitro rodent models to define the role of hypoxic signaling during elevated inorganic phosphate-induced VSMC calcification. Cell mineralization studies showed that elevated inorganic phosphate rapidly induced VSMC calcification. Hypoxia strongly enhanced elevated inorganic phosphate-induced VSMC calcification and osteogenic transdifferentiation, as seen by osteogenic marker expression. Hypoxia-inducible factor-1 (HIF-1), the key hypoxic transcription factor, was essential for enhanced VSMC calcification. Targeting HIF-1 expression in murine VSMC blocked calcification in hypoxia with elevated inorganic phosphate while HIF-1 activators, including clinically used FG-4592/Roxadustat, recreated a procalcifying environment. Elevated inorganic phosphate rapidly activated HIF-1, even in normal oxygenation; an effect mediated by HIF-1α subunit stabilization. Thus, hypoxia synergizes with elevated inorganic phosphate to enhance VSMC osteogenic transdifferentiation. Our work identifies HIF-1 as an early CKD-related pathological event, prospective marker, and potential target against vascular calcification in CKD-relevant conditions.


Subject(s)
Cell Transdifferentiation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Muscle, Smooth, Vascular/pathology , Phosphates/metabolism , Renal Insufficiency, Chronic/complications , Vascular Calcification/metabolism , Animals , Biomarkers/metabolism , Cells, Cultured , Disease Models, Animal , Glycine/analogs & derivatives , Glycine/pharmacology , Humans , Hypoxia/metabolism , Immunohistochemistry , Isoquinolines/pharmacology , Male , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/metabolism , Rats , Rats, Wistar , Renal Insufficiency, Chronic/metabolism , Signal Transduction , Vascular Calcification/etiology , Vascular Stiffness
8.
Int J Cancer ; 137(5): 1021-34, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-25523631

ABSTRACT

Radiotherapy is a major treatment modality for head and neck squamous cell carcinoma (HNSCC). Up to 50% of patients with locally advanced disease relapse after radical treatment and there is therefore a need to develop predictive bomarkers for clinical use that allow the selection of patients who are likely to respond. MicroRNA (miRNA) expression profiling of a panel of HNSCC tumours with and without recurrent disease after surgery and radiotherapy detected miR-196a as one of the highest upregulated miRNAs in the poor prognostic group. To further study the role of miR-196a, its expression was determined in eight head and neck cancer cell lines. Overexpression of miR-196a in HNSCC cells, with low endogenous miR-196a expression, significantly increased cell proliferation, migration and invasion, and induced epithelial to mesenchymal transition. Conversely, miR-196a knockdown in cells with high endogenous expression levels significantly reduced oncogenic behaviour. Importantly, overexpression of miR-196a increased radioresistance of cells as measured by gamma H2AX staining and MTT survival assay. Annexin A1 (ANXA1), a known target of miR-196a, was found to be directly modulated by miR-196a as measured by luciferase assay and confirmed by Western blot analysis. ANXA1 knockdown in HNSCC exhibited similar phenotypic effects to miR-196a overexpression, suggesting the oncogenic effect of miR-196a may at least be partly regulated through suppression of ANXA1. In conclusion, this study identifies miR-196a as a potential important biomarker of prognosis and response of HNSCC to radiotherapy. Furthermore, our data suggest that miR-196a and/or its target gene ANXA1 could represent important therapeutic targets in HNSCC.


Subject(s)
Annexin A1/metabolism , Carcinoma, Squamous Cell/genetics , Head and Neck Neoplasms/genetics , MicroRNAs/metabolism , Radiation Tolerance , Annexin A1/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Cell Movement/radiation effects , Cell Proliferation/radiation effects , Epithelial-Mesenchymal Transition/radiation effects , HEK293 Cells , Head and Neck Neoplasms/pathology , Humans , Prognosis
9.
J Cell Sci ; 126(Pt 1): 348-59, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23108668

ABSTRACT

The interplay between homologous DNA recombination and mitotic progression is poorly understood. The five RAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2 and XRCC3) are key enzymes for DNA double-strand break repair. In our search for specific functions of the various RAD51 paralogs, we found that inhibition of XRCC3 elicits checkpoint defects, while inhibition of RAD51B or RAD51C induces G2/M cell cycle arrest in HeLa cells. Using live-cell microscopy we show that in XRCC3-knockdown cells the spindle assembly checkpoint persists and there is a higher frequency of chromosome misalignments, anaphase bridges, and aneuploidy. We observed centrosome defects in the absence of XRCC3. While RAD51B and RAD51C act early in homologous recombination, XRCC3 functions jointly with GEN1 later in the pathway at the stage of Holliday junction resolution. Our data demonstrate that Holliday junction resolution has critical functions for preventing aberrant mitosis and aneuploidy in mitotic cells.


Subject(s)
Aneuploidy , DNA-Binding Proteins/metabolism , Blotting, Western , DNA, Cruciform/genetics , DNA-Binding Proteins/genetics , Flow Cytometry , Fluorescent Antibody Technique , HeLa Cells , Holliday Junction Resolvases/genetics , Holliday Junction Resolvases/metabolism , Humans , Mitosis/genetics , RNA Interference
10.
PLoS Genet ; 8(12): e1003151, 2012.
Article in English | MEDLINE | ID: mdl-23284306

ABSTRACT

Numerous genetic and epigenetic alterations render cancer cells selectively dependent on specific genes and regulatory pathways, and represent potential vulnerabilities that can be therapeutically exploited. Here we describe an RNA interference (RNAi)-based synthetic interaction screen to identify genes preferentially required for proliferation of p53-deficient (p53-) human cancer cells. We find that compared to p53-competent (p53+) human cancer cell lines, diverse p53- human cancer cell lines are preferentially sensitive to loss of the transcription factor ETV1 and the DNA damage kinase ATR. In p53- cells, RNAi-mediated knockdown of ETV1 or ATR results in decreased expression of the telomerase catalytic subunit TERT leading to growth arrest, which can be reversed by ectopic TERT expression. Chromatin immunoprecipitation analysis reveals that ETV1 binds to a region downstream of the TERT transcriptional start-site in p53- but not p53+ cells. We find that the role of ATR is to phosphorylate and thereby stabilize ETV1. Our collective results identify a regulatory pathway involving ETV1, ATR, and TERT that is preferentially important for proliferation of diverse p53- cancer cells.


Subject(s)
Cell Cycle Proteins , Cell Proliferation , DNA-Binding Proteins , Protein Serine-Threonine Kinases , Telomerase , Transcription Factors , Tumor Suppressor Protein p53 , Ataxia Telangiectasia Mutated Proteins , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Humans , Neoplasms/metabolism , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , Telomerase/genetics , Telomerase/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics
11.
Sci Adv ; 10(22): eadk9681, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820148

ABSTRACT

In response to energy and nutrient shortage, the liver triggers several catabolic processes to promote survival. Despite recent progress, the precise molecular mechanisms regulating the hepatic adaptation to fasting remain incompletely characterized. Here, we report the identification of hydroxysteroid dehydrogenase-like 2 (HSDL2) as a mitochondrial protein highly induced by fasting. We show that the activation of PGC1α-PPARα and the inhibition of the PI3K-mTORC1 axis stimulate HSDL2 expression in hepatocytes. We found that HSDL2 depletion decreases cholesterol conversion to bile acids (BAs) and impairs FXR activity. HSDL2 knockdown also reduces mitochondrial respiration, fatty acid oxidation, and TCA cycle activity. Bioinformatics analyses revealed that hepatic Hsdl2 expression positively associates with the postprandial excursion of various BA species in mice. We show that liver-specific HSDL2 depletion affects BA metabolism and decreases circulating cholesterol levels upon refeeding. Overall, our report identifies HSDL2 as a fasting-induced mitochondrial protein that links nutritional signals to BAs and cholesterol homeostasis.


Subject(s)
Bile Acids and Salts , Cholesterol , Homeostasis , Animals , Cholesterol/metabolism , Bile Acids and Salts/metabolism , Mice , Fasting/metabolism , Liver/metabolism , Humans , Mitochondria/metabolism , Signal Transduction , Hepatocytes/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism
12.
Nature ; 449(7165): 1073-7, 2007 Oct 25.
Article in English | MEDLINE | ID: mdl-17960246

ABSTRACT

The conversion of a normal cell to a cancer cell occurs in several steps and typically involves the activation of oncogenes and the inactivation of tumour suppressor and pro-apoptotic genes. In many instances, inactivation of genes critical for cancer development occurs by epigenetic silencing, often involving hypermethylation of CpG-rich promoter regions. It remains to be determined whether silencing occurs by random acquisition of epigenetic marks that confer a selective growth advantage or through a specific pathway initiated by an oncogene. Here we perform a genome-wide RNA interference (RNAi) screen in K-ras-transformed NIH 3T3 cells and identify 28 genes required for Ras-mediated epigenetic silencing of the pro-apoptotic Fas gene. At least nine of these RESEs (Ras epigenetic silencing effectors), including the DNA methyltransferase DNMT1, are directly associated with specific regions of the Fas promoter in K-ras-transformed NIH 3T3 cells but not in untransformed NIH 3T3 cells. RNAi-mediated knockdown of any of the 28 RESEs results in failure to recruit DNMT1 to the Fas promoter, loss of Fas promoter hypermethylation, and derepression of Fas expression. Analysis of five other epigenetically repressed genes indicates that Ras directs the silencing of multiple unrelated genes through a largely common pathway. Last, we show that nine RESEs are required for anchorage-independent growth and tumorigenicity of K-ras-transformed NIH 3T3 cells; these nine genes have not previously been implicated in transformation by Ras. Our results show that Ras-mediated epigenetic silencing occurs through a specific, complex, pathway involving components that are required for maintenance of a fully transformed phenotype.


Subject(s)
Epigenesis, Genetic , Gene Silencing , Oncogene Protein p21(ras)/metabolism , Animals , Cell Line, Transformed , Cell Transformation, Neoplastic/genetics , Chromatin Immunoprecipitation , DNA Methylation , Gene Expression Regulation, Neoplastic , Genes, ras/genetics , Mice , NIH 3T3 Cells , Oncogene Protein p21(ras)/genetics , Promoter Regions, Genetic/genetics , RNA Interference , fas Receptor/genetics
13.
iScience ; 25(3): 103858, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35198911

ABSTRACT

ETV6 transcriptional activity is critical for proper blood cell development in the bone marrow. Despite the accumulating body of evidence linking ETV6 malfunction to hematological malignancies, its regulatory network remains unclear. To uncover genes that modulate ETV6 repressive transcriptional activity, we performed a specifically designed, unbiased genome-wide shRNA screen in pre-B acute lymphoblastic leukemia cells. Following an extensive validation process, we identified 13 shRNAs inducing overexpression of ETV6 transcriptional target genes. We showed that the silencing of AKIRIN1, COMMD9, DYRK4, JUNB, and SRP72 led to an abrogation of ETV6 repressive activity. We identified critical modulators of the ETV6 function which could participate in cellular transformation through the ETV6 transcriptional network.

14.
Nutrients ; 13(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34444777

ABSTRACT

Ursodeoxycholic acid (UDCA) is the first line therapy for the treatment of cholestatic and autoimmune liver diseases. Its clinical use is currently limited by a significant proportion of non-responder patients. Polyunsaturated fatty acids (n-3 PUFAs) possess important anti-inflammatory properties and protect liver cells against bile acid (BA)-induced toxicity. The present study was designed to rapidly evaluate whether combining n-3 PUFAs (i.e., eicosapentaenoic [EPA] and docosahexaenoic [DHA] acids) to UDCA would provide additional benefits when compared to the drug alone. The parameters evaluated were (i) the expression of genes governing BA synthesis, transport, and metabolism; (ii) the prevention of BA-induced apoptosis and endoplasmic reticulum (ER)-stress; and (iii) the control of BA- and LPS-dependent inflammation. In the absence of n-3 PUFAs, most of the parameters investigated were unaffected by UDCA or were only altered by the higher dose (500 µM) of the drug. By contrast, in the presence of EPA/DHA (50/50 µM), all parameters showed a strongly improved response and the lowest UDCA dosage (50 µM) provided equal or better benefits than the highest dose used alone. For example, the combination EPA/DHA + UDCA 50 µM caused comparable down-regulation of the CYP7A1 gene expression and of the BA-induced caspase 3 activity as observed with UDCA 500 µM. In conclusion, these results suggest that the addition of n-3 PUFAs to UDCA may improve the response to the drug, and that such a pharmaco-nutraceutical approach could be used in clinic to open the narrow therapeutic dose of UDCA in cholestatic liver diseases.


Subject(s)
Dietary Supplements , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Ursodeoxycholic Acid/pharmacology , Apoptosis/drug effects , Autoimmune Diseases , Bile Acids and Salts/metabolism , Bile Acids and Salts/toxicity , Carcinoma, Hepatocellular , Caspase 3 , Cholangitis, Sclerosing , Cholestanetriol 26-Monooxygenase/genetics , Cholestasis , Cholesterol 7-alpha-Hydroxylase/genetics , Down-Regulation/drug effects , Drug Therapy, Combination , Endoplasmic Reticulum Stress/drug effects , Gene Expression/drug effects , Hep G2 Cells , Humans , Inflammation , Liver/metabolism , Liver Cirrhosis, Biliary , Liver Diseases , THP-1 Cells
15.
Nat Commun ; 12(1): 4841, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404770

ABSTRACT

RAS proteins are GTPases that lie upstream of a signaling network impacting cell fate determination. How cells integrate RAS activity to balance proliferation and cellular senescence is still incompletely characterized. Here, we identify ZNF768 as a phosphoprotein destabilized upon RAS activation. We report that ZNF768 depletion impairs proliferation and induces senescence by modulating the expression of key cell cycle effectors and established p53 targets. ZNF768 levels decrease in response to replicative-, stress- and oncogene-induced senescence. Interestingly, ZNF768 overexpression contributes to bypass RAS-induced senescence by repressing the p53 pathway. Furthermore, we show that ZNF768 interacts with and represses p53 phosphorylation and activity. Cancer genomics and immunohistochemical analyses reveal that ZNF768 is often amplified and/or overexpressed in tumors, suggesting that cells could use ZNF768 to bypass senescence, sustain proliferation and promote malignant transformation. Thus, we identify ZNF768 as a protein linking oncogenic signaling to the control of cell fate decision and proliferation.


Subject(s)
Cellular Senescence/genetics , Genes, ras/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Carcinogenesis , Cell Cycle , Cell Differentiation , Cell Proliferation , Cell Transformation, Neoplastic , DNA Replication , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Genomics , HeLa Cells , Humans , Oncogenes , Phenotype , Phosphoproteins , Phosphorylation , Repression, Psychology , Signal Transduction , ras Proteins/genetics
16.
J Pharm Pharmacol ; 72(2): 249-258, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31729035

ABSTRACT

OBJECTIVES: In this study, the antiproliferative activity of 3 phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) was assessed in a time-dependent manner together with their hepatic stability and metabolism using human, mouse and rat liver microsomes. METHODS: CEU-818, -820 and -913 were selected as promising hit compounds. Their antiproliferative activity on human breast carcinoma MCF-7 cells was evaluated using escalating concentrations of drugs at 24, 36 and 48 h and the sulforhodamine B assay. Their hepatic stability was evaluated by HPLC-UV of extracts obtained from human, mouse and rat liver microsomes. KEY FINDINGS: The antiproliferative activity of PAIB-SOs is concentration and time-dependent and requires between 24 and 36 h of contact with MCF-7 cells to detect a significant antiproliferative activity. PAIB-SOs stability in microsomes usually decreases following this order: human ≈ (rat > mouse). The CEU-913 exhibits the longest half-life in rat and human liver microsomes while the CEU-820 exhibits the longest half-life in mouse liver microsomes. CONCLUSIONS: Our in vitro results suggest that PAIB-SOs should have a minimum contact time of 24 h with the tumour to trigger significant antitumoural activity. The activity of mouse liver microsomes towards PAIB-SOs is higher than rat microsomes and tends to be higher than human liver microsomes.


Subject(s)
Antineoplastic Agents/pharmacology , Benzenesulfonates/pharmacology , Breast Neoplasms/drug therapy , Microsomes, Liver/metabolism , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Benzenesulfonates/administration & dosage , Benzenesulfonates/chemistry , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cytochrome P-450 CYP1A1/metabolism , Female , Half-Life , Humans , MCF-7 Cells , Mice , Prodrugs , Rats , Rats, Sprague-Dawley , Species Specificity , Time Factors
17.
Int J Dev Biol ; 62(11-12): 857-864, 2018.
Article in English | MEDLINE | ID: mdl-30604855

ABSTRACT

The HOX genes are transcription factors that are expressed in coordinated spatiotemporal patterns to ensure normal development. Ectopic expression may instead lead to the development and progression of tumors. Genetic polymorphisms in the regions of four HOX gene clusters were tested for association with lung cancer in 420 cases and 3,151 controls. The effect of these variants on lung gene expression (expression quantitative trait loci, eQTL) was tested in a discovery set of 409 non-tumor lung samples and validated in two lung eQTL replication sets (n = 287 and 342). The expression levels of HOXB2 were evaluated at the mRNA and protein levels by quantitative real-time PCR and immunohistochemistry in paired tumor and non-tumor lung tissue samples. The most significant SNP associated with lung cancer in the HOXB cluster was rs10853100 located upstream of the HOXB cluster. HOXB2 was the top eQTL-regulated gene with several polymorphisms associated with its mRNA expression levels in lung tissue. This includes the lung cancer SNP rs10853100 that was significantly associated with HOXB2 expression (P=3.39E-7). In the lung eQTL discovery and replication sets, the lung cancer risk allele (T) for rs10853100 was associated with lower HOXB2 expression levels. In paired normal-tumor samples, HOXB2 mRNA and protein levels were significantly reduced in tumors when compared to non-tumor lung tissues. Genetic variants in the HOXB cluster may confer susceptibility to lung cancer by modulating the expression of HOXB2 in the lung.


Subject(s)
Genetic Predisposition to Disease , Homeodomain Proteins/genetics , Lung Neoplasms/genetics , Lung/metabolism , Polymorphism, Single Nucleotide , Transcription Factors/genetics , Aged , Female , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Homeodomain Proteins/metabolism , Humans , Lung Neoplasms/metabolism , Male , Middle Aged , Quantitative Trait Loci , Transcription Factors/metabolism
18.
Oncotarget ; 8(47): 82506-82530, 2017 Oct 10.
Article in English | MEDLINE | ID: mdl-29137281

ABSTRACT

The molecular basis of epithelial ovarian cancer (EOC) dissemination is still poorly understood. We have previously identified the hydrogen peroxide-inducible clone-5 (Hic-5) gene as hypomethylated in high-grade (HG) serous EOC tumors, compared to normal ovarian tissues. Hic-5 is a focal adhesion scaffold protein and has been primarily studied for its role as a key mediator of TGF-ß-induced epithelial-to-mesenchymal transition (EMT) in epithelial cells of both normal and malignant origin; however, its role in EOC has been never investigated. Here we demonstrate that Hic-5 is overexpressed in advanced EOC, and that Hic-5 is upregulated upon TGFß1 treatment in the EOC cell line with epithelial morphology (A2780s), associated with EMT induction. However, ectopic expression of Hic-5 in A2780s cells induces EMT independently of TGFß1, accompanied with enhancement of cellular proliferation rate and migratory/invasive capacity and increased resistance to chemotherapeutic drugs. Moreover, Hic-5 knockdown in the EOC cells with mesenchymal morphology (SKOV3) was accompanied by induction of mesenchymal-to-epithelial transition (MET), followed by a reduction of their proliferative, migratory/invasive capacity, and increased drugs sensitivity in vitro, as well as enhanced tumor cell colonization and metastatic growth in vivo. The modulation of Hic-5 expression in EOC cells resulted in altered regulation of numerous EMT-related canonical pathways and was indicative for a possible role of Hic-5 in controlling EMT through a RhoA/ROCK mediated mechanism. To our knowledge, this is the first report examining the role of Hic-5 in EOC, and its role in maintaining the mesenchymal phenotype of EOC cells independently of exogenous TGFß1 treatment.

19.
J Med Chem ; 60(12): 4963-4982, 2017 06 22.
Article in English | MEDLINE | ID: mdl-28535350

ABSTRACT

Prodrug-mediated utilization of the cytochrome P450 (CYP) 1A1 to obtain the selective release of potent anticancer products within cancer tissues is a promising approach in chemotherapy. We herein report the rationale, preparation, biological evaluation, and mechanism of action of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) that are antimicrotubule prodrugs activated by CYP1A1. Although PAIB-SOs are inert in most cells tested, they are highly cytocidal toward several human breast cancer cells, including hormone-independent and chemoresistant types. PAIB-SOs are N-dealkylated into cytotoxic phenyl 4-(2-oxo-3-imidazolidin-1-yl)benzenesulfonates (PIB-SOs) in CYP1A1-positive cancer cells, both in vitro and in vivo. In conclusion, PAIB-SOs are novel chemotherapeutic prodrugs with no equivalent among current antineoplastics and whose selective action toward breast cancer is tailored to the characteristic pattern of CYP1A1 expression observed in a large percentage of human breast tumors.


Subject(s)
Antimitotic Agents/pharmacology , Benzenesulfonates/chemistry , Breast Neoplasms/drug therapy , Cytochrome P-450 CYP1A1/metabolism , Prodrugs/pharmacology , Animals , Antimitotic Agents/pharmacokinetics , Benzenesulfonates/chemical synthesis , Cell Line, Tumor , Cell Proliferation/drug effects , Chemistry Techniques, Synthetic , Chick Embryo , Cytochrome P-450 CYP1A1/genetics , Drug Screening Assays, Antitumor/methods , Female , Humans , Prodrugs/pharmacokinetics
20.
Cell Cycle ; 16(7): 693-706, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28278050

ABSTRACT

Previously, we have identified the Grainyhead transcription factor 2 gene (GRHL2) as notably hypomethylated in high-grade (HG) serous epithelial ovarian tumors, compared with normal ovarian tissues. GRHL2 is known for its functions in normal tissue development and wound healing. In the context of cancer, the role of GRHL2 is still ambiguous as both tumorigenic and tumor suppressive functions have been reported for this gene, although a role of GRHL2 in maintaining the epithelial status of cancer cells has been suggested. In this study, we report that GRHL2 is strongly overexpressed in both low malignant potential (LMP) and HG serous epithelial ovarian tumors, which probably correlates with its hypomethylated status. Suppression of the GRHL2 expression led to a sharp decrease in cell proliferation, migration and invasion and induced G1 cell cycle arrest in epithelial ovarian cancer (EOC) cells displaying either epithelial (A2780s) or mesenchymal (SKOV3) phenotypes. However, no phenotypic alterations were observed in these EOC cell lines following GRHL2 silencing. Gene expression profiling and consecutive canonical pathway and network analyses confirmed these data, as in both these EOC cell lines, GRHL2 ablation was associated with the downregulation of various genes and pathways implicated in cell growth and proliferation, cell cycle control and cellular metabolism. Taken together, our data are indicative for a strong oncogenic potential of the GRHL2 gene in EOC progression and support recent findings on the role of GRHL2 as one of the major phenotypic stability factors (PSFs) that stabilize the highly aggressive/metastatic hybrid epithelial/mesenchymal (E/M) phenotype of cancer cells.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Movement/genetics , DNA-Binding Proteins/genetics , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/pathology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Transcription Factors/genetics , CRISPR-Cas Systems/genetics , Carcinoma, Ovarian Epithelial , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation , DNA-Binding Proteins/metabolism , Female , Gene Expression Regulation, Neoplastic , Gene Knockout Techniques , Humans , Immunohistochemistry , Neoplasm Invasiveness , Oligonucleotide Array Sequence Analysis , Phenotype , RNA, Small Interfering/metabolism , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Signal Transduction/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL