ABSTRACT
Alzheimer's disease (AD) is characterized by several neuropathological changes, mainly extracellular amyloid aggregates (plaques), intraneuronal inclusions of phosphorylated tau (tangles), as well as neuronal and synaptic degeneration, accompanied by tissue reactions to these processes (astrocytosis and microglial activation) that precede neuronal network disturbances in the symptomatic phase of the disease. A number of biomarkers for these brain tissue changes have been developed, mainly using immunoassays. In this review, we discuss how targeted mass spectrometry (TMS) can be used to validate and further characterize classes of biomarkers reflecting different AD pathologies, such as tau- and amyloid-beta pathologies, synaptic dysfunction, lysosomal dysregulation, and axonal damage, and the prospect of using TMS to measure these proteins in clinical research and diagnosis. TMS advantages and disadvantages in relation to immunoassays are discussed, and complementary aspects of the technologies are discussed.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Brain/metabolism , Amyloid beta-Peptides/metabolism , Biomarkers/metabolismABSTRACT
Synaptic dysfunction and degeneration is likely the key pathophysiology for the progression of cognitive decline in various dementia disorders. Synaptic status can be monitored by measuring synaptic proteins in CSF. In this study, both known and new synaptic proteins were investigated and compared as potential biomarkers of synaptic dysfunction, particularly in the context of Alzheimer's disease (AD). Seventeen synaptic proteins were quantified in CSF using two different targeted mass spectrometry assays in the prospective Swedish BioFINDER-2 study. The study included 958 individuals, characterized as having mild cognitive impairment (MCI, n = 205), AD dementia (n = 149) and a spectrum of other neurodegenerative diseases (n = 171), in addition to cognitively unimpaired individuals (CU, n = 443). Synaptic protein levels were compared between diagnostic groups and their associations with cognitive decline and key neuroimaging measures (amyloid-ß-PET, tau-PET and cortical thickness) were assessed. Among the 17 synaptic proteins examined, 14 were specifically elevated in the AD continuum. SNAP-25, 14-3-3 zeta/delta, ß-synuclein, and neurogranin exhibited the highest discriminatory accuracy in differentiating AD dementia from controls (areas under the curve = 0.81-0.93). SNAP-25 and 14-3-3 zeta/delta also had the strongest associations with tau-PET, amyloid-ß-PET and cortical thickness at baseline and were associated with longitudinal changes in these imaging biomarkers [ß(standard error, SE) = -0.056(0.0006) to 0.058(0.005), P < 0.0001]. SNAP-25 was the strongest predictor of progression to AD dementia in non-demented individuals (hazard ratio = 2.11). In contrast, neuronal pentraxins were decreased in all neurodegenerative diseases (except for Parkinson's disease), and NPTX2 showed the strongest associations with subsequent cognitive decline [longitudinal Mini-Mental State Examination: ß(SE) = 0.57(0.1), P ≤ 0.0001; and mPACC: ß(SE) = 0.095(0.024), P ≤ 0.001] across the AD continuum. Interestingly, utilizing a ratio of the proteins that displayed higher levels in AD, such as SNAP-25 or 14-3-3 zeta/delta, over NPTX2 improved the biomarkers' associations with cognitive decline and brain atrophy. We found 14-3-3 zeta/delta and SNAP-25 to be especially promising as synaptic biomarkers of pathophysiological changes in AD. Neuronal pentraxins were identified as general indicators of neurodegeneration and associated with cognitive decline across various neurodegenerative dementias. Cognitive decline and brain atrophy were best predicted by ratios of SNAP-25/NPTX2 and 14-3-3 zeta/delta/NPTX2.
Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Neurodegenerative Diseases , Synapses , Humans , Male , Female , Aged , Biomarkers/cerebrospinal fluid , Neurodegenerative Diseases/cerebrospinal fluid , Cognitive Dysfunction/cerebrospinal fluid , Alzheimer Disease/cerebrospinal fluid , Middle Aged , Synapses/pathology , Aged, 80 and over , Prospective Studies , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Positron-Emission Tomography , Neurogranin/cerebrospinal fluidABSTRACT
Brain amyloid-ß (Aß) deposits are key pathological hallmarks of both cerebral amyloid angiopathy (CAA) and Alzheimer's disease (AD). Microvascular deposits in CAA mainly consist of the Aß40 peptide, whereas Aß42 is the predominant variant in parenchymal plaques in AD. The relevance in pathogenesis and diagnostic accuracy of various other Aß isoforms in CAA remain understudied. We aimed to investigate the biomarker potential of various Aß isoforms in cerebrospinal fluid (CSF) to differentiate CAA from AD pathology. We included 25 patients with probable CAA, 50 subjects with a CSF profile indicative of AD pathology (AD-like), and 23 age- and sex-matched controls. CSF levels of Aß1-34, Aß1-37, Aß1-38, Aß1-39, Aß1-40, and Aß1-42 were quantified by liquid chromatography mass spectrometry. Lower CSF levels of all six Aß peptides were observed in CAA patients compared with controls (p = 0.0005-0.03). Except for Aß1-42 (p = 1.0), all peptides were decreased in CAA compared with AD-like subjects (p = 0.007-0.03). Besides Aß1-42, none of the Aß peptides were decreased in AD-like subjects compared with controls. All Aß peptides combined differentiated CAA from AD-like subjects better (area under the curve [AUC] 0.84) than individual peptide levels (AUC 0.51-0.75). Without Aß1-42 in the model (since decreased Aß1-42 served as AD-like selection criterion), the AUC was 0.78 for distinguishing CAA from AD-like subjects. CAA patients and AD-like subjects showed distinct disease-specific CSF Aß profiles. Peptides shorter than Aß1-42 were decreased in CAA patients, but not AD-like subjects, which could suggest different pathological mechanisms between vascular and parenchymal Aß accumulation. This study supports the potential use of this panel of CSF Aß peptides to indicate presence of CAA pathology with high accuracy.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Cerebral Amyloid Angiopathy , Humans , Cerebral Amyloid Angiopathy/cerebrospinal fluid , Cerebral Amyloid Angiopathy/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Female , Male , Aged , Biomarkers/cerebrospinal fluid , Middle Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Peptide Fragments/cerebrospinal fluid , Aged, 80 and overABSTRACT
Genome-scale metabolic models (GEMs) are used extensively for analysis of mechanisms underlying human diseases and metabolic malfunctions. However, the lack of comprehensive and high-quality GEMs for model organisms restricts translational utilization of omics data accumulating from the use of various disease models. Here we present a unified platform of GEMs that covers five major model animals, including Mouse1 (Mus musculus), Rat1 (Rattus norvegicus), Zebrafish1 (Danio rerio), Fruitfly1 (Drosophila melanogaster), and Worm1 (Caenorhabditis elegans). These GEMs represent the most comprehensive coverage of the metabolic network by considering both orthology-based pathways and species-specific reactions. All GEMs can be interactively queried via the accompanying web portal Metabolic Atlas. Specifically, through integrative analysis of Mouse1 with RNA-sequencing data from brain tissues of transgenic mice we identified a coordinated up-regulation of lysosomal GM2 ganglioside and peptide degradation pathways which appears to be a signature metabolic alteration in Alzheimer's disease (AD) mouse models with a phenotype of amyloid precursor protein overexpression. This metabolic shift was further validated with proteomics data from transgenic mice and cerebrospinal fluid samples from human patients. The elevated lysosomal enzymes thus hold potential to be used as a biomarker for early diagnosis of AD. Taken together, we foresee that this evolving open-source platform will serve as an important resource to facilitate the development of systems medicines and translational biomedical applications.
Subject(s)
Alzheimer Disease/pathology , Biomarkers/analysis , Disease Models, Animal , Gene Regulatory Networks , Metabolic Networks and Pathways , Proteome , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Caenorhabditis elegans , Drosophila melanogaster , Genome , Humans , Mice , Mice, Transgenic , Rats , ZebrafishABSTRACT
INTRODUCTION: Recent genome-wide association studies (GWAS) have reported a genetic association with Alzheimer's disease (AD) at the TNIP1/GPX3 locus, but the mechanism is unclear. METHODS: We used cerebrospinal fluid (CSF) proteomics data to test (n = 137) and replicate (n = 446) the association of glutathione peroxidase 3 (GPX3) with CSF biomarkers (including amyloid and tau) and the GWAS-implicated variants (rs34294852 and rs871269). RESULTS: CSF GPX3 levels decreased with amyloid and tau positivity (analysis of variance P = 1.5 × 10-5) and higher CSF phosphorylated tau (p-tau) levels (P = 9.28 × 10-7). The rs34294852 minor allele was associated with decreased GPX3 (P = 0.041). The replication cohort found associations of GPX3 with amyloid and tau positivity (P = 2.56 × 10-6) and CSF p-tau levels (P = 4.38 × 10-9). DISCUSSION: These results suggest variants in the TNIP1 locus may affect the oxidative stress response in AD via altered GPX3 levels. HIGHLIGHTS: Cerebrospinal fluid (CSF) glutathione peroxidase 3 (GPX3) levels decreased with amyloid and tau positivity and higher CSF phosphorylated tau. The minor allele of rs34294852 was associated with lower CSF GPX3. levels when also controlling for amyloid and tau category. GPX3 transcript levels in the prefrontal cortex were lower in Alzheimer's disease than controls. rs34294852 is an expression quantitative trait locus for GPX3 in blood, neutrophils, and microglia.
Subject(s)
Alzheimer Disease , Genome-Wide Association Study , Glutathione Peroxidase , tau Proteins , Aged , Aged, 80 and over , Female , Humans , Male , Alzheimer Disease/genetics , Alzheimer Disease/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , DNA-Binding Proteins/genetics , Glutathione Peroxidase/genetics , Glutathione Peroxidase/cerebrospinal fluid , Polymorphism, Single Nucleotide/genetics , Proteomics , tau Proteins/cerebrospinal fluid , tau Proteins/geneticsABSTRACT
INTRODUCTION: We aimed to unravel the underlying pathophysiology of the neurodegeneration (N) markers neurogranin (Ng), neurofilament light (NfL), and hippocampal volume (HCV), in Alzheimer's disease (AD) using cerebrospinal fluid (CSF) proteomics. METHODS: Individuals without dementia were classified as A+ (CSF amyloid beta [Aß]42), T+ (CSF phosphorylated tau181), and N+ or N- based on Ng, NfL, or HCV separately. CSF proteomics were generated and compared between groups using analysis of covariance. RESULTS: Only a few individuals were A+T+Ng-. A+T+Ng+ and A+T+NfL+ showed different proteomic profiles compared to A+T+Ng- and A+T+NfL-, respectively. Both Ng+ and NfL+ were associated with neuroplasticity, though in opposite directions. Compared to A+T+HCV-, A+T+HCV+ showed few proteomic changes, associated with oxidative stress. DISCUSSION: Different N markers are associated with distinct neurodegenerative processes and should not be equated. N markers may differentially complement disease staging beyond amyloid and tau. Our findings suggest that Ng may not be an optimal N marker, given its low incongruency with tau pathophysiology. HIGHLIGHTS: In Alzheimer's disease, neurogranin (Ng)+, neurofilament light (NfL)+, and hippocampal volume (HCV)+ showed differential protein expression in cerebrospinal fluid. Ng+ and NfL+ were associated with neuroplasticity, although in opposite directions. HCV+ showed few proteomic changes, related to oxidative stress. Neurodegeneration (N) markers may differentially refine disease staging beyond amyloid and tau. Ng might not be an optimal N marker, as it relates more closely to tau.
Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Hippocampus , Neurofilament Proteins , Neurogranin , Proteomics , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/pathology , Biomarkers/cerebrospinal fluid , Neurogranin/cerebrospinal fluid , Female , Male , Aged , Neurofilament Proteins/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Hippocampus/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Middle Aged , Peptide Fragments/cerebrospinal fluidABSTRACT
INTRODUCTION: Clinical proteomics studies of Alzheimer's disease (AD) research aim to identify biomarkers useful for clinical research, diagnostics, and improve our understanding of the pathological processes involved in the disease. The rapidly increasing performance of proteomics technologies is likely to have great impact on AD research. AREAS COVERED: We review recent proteomics approaches that have advanced the field of clinical AD research. Specifically, we discuss the application of targeted mass spectrometry (MS), labeling-based and label-free MS-based as well as affinity-based proteomics to AD biomarker development, underpinning their importance with the latest impactful clinical studies. We evaluate how proteomics technologies have been adapted to meet current challenges. Finally, we discuss the limitations and potential of proteomics techniques and whether their scope might extend beyond current research-based applications. EXPERT OPINION: To date, proteomics technologies in the AD field have been largely limited to AD biomarker discovery. The recent development of the first successful disease-modifying treatments of AD will further increase the need for blood biomarkers for early, accurate diagnosis, and CSF biomarkers that reflect specific pathological processes. Proteomics has the potential to meet these requirements and to progress into clinical routine practice, provided that current limitations are overcome.
Subject(s)
Alzheimer Disease , Biomedical Research , Humans , Alzheimer Disease/diagnosis , Proteomics/methods , Mass Spectrometry/methods , BiomarkersABSTRACT
Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , tau Proteins , Autopsy , BiomarkersABSTRACT
BACKGROUND: Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. OBJECTIVE: To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. METHODS: Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort. RESULTS: Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25-0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; ß-estimate = -0.025 to -0.038, P < 0.05) and cognitive decline (NPTX2; ß-estimate = 0.32, P = 0.021). CONCLUSIONS: These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Subject(s)
Alzheimer Disease , Multiple System Atrophy , Parkinson Disease , Parkinsonian Disorders , Supranuclear Palsy, Progressive , Humans , Parkinson Disease/complications , Parkinsonian Disorders/pathology , Supranuclear Palsy, Progressive/diagnosis , Multiple System Atrophy/diagnosis , Alzheimer Disease/complications , Biomarkers/cerebrospinal fluidABSTRACT
OBJECTIVES: Neurofilament light chain (NfL) concentration in blood is a biomarker of neuro-axonal injury in the nervous system and there now exist several assays with high enough sensitivity to measure NfL in serum and plasma. There is a need for harmonization with the goal of creating a certified reference material (CRM) for NfL and an early step in such an effort is to determine the best matrix for the CRM. This is done in a commutability study and here the results of the first one for NfL in blood is presented. METHODS: Forty paired individual serum and plasma samples were analyzed for NfL on four different analytical platforms. Neat and differently spiked serum and plasma were evaluated for their suitability as a CRM using the difference in bias approach. RESULTS: The correlation between the different platforms with regards to measured NfL concentrations were very high (Spearman's ρ≥0.96). Samples spiked with cerebrospinal fluid (CSF) showed higher commutability compared to samples spiked with recombinant human NfL protein and serum seems to be a better choice than plasma as the matrix for a CRM. CONCLUSIONS: The results from this first commutability study on NfL in serum/plasma showed that it is feasible to create a CRM for NfL in blood and that spiking should be done using CSF rather than with recombinant human NfL protein.
Subject(s)
Intermediate Filaments , Neurofilament Proteins , Humans , Serum , Plasma , Reference Standards , Biomarkers , Recombinant ProteinsABSTRACT
INTRODUCTION: Secernin-1 (SCRN1) is a neuronal protein that co-localizes with neurofibrillary tangles in Alzheimer's disease (AD), but not with tau inclusions in corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), or Pick's disease. METHODS: We measured SCRN1 concentration in cerebrospinal fluid (CSF) using a novel mass spectrometric parallel reaction monitoring method in three clinical cohorts comprising patients with neurochemically characterized AD (n = 25) and controls (n = 28), clinically diagnosed Parkinson's disease (PD; n = 38), multiple system atrophy (MSA; n = 31), PSP (n = 20), CBD (n = 8), healthy controls (n = 37), and neuropathology-confirmed AD (n = 47). RESULTS: CSF SCRN1 was significantly increased in AD (P < 0.01, fold change = 1.4) compared to controls (receiver operating characteristic area under the curve = 0.78) but not in CBD, PSP, PD, or MSA. CSF SCRN1 positively correlated with CSF total tau (R = 0.78, P = 1.1 × 10-13 ), phosphorylated tau181 (R = 0.64, P = 3.2 × 10-8 ), and Braak stage and negatively correlated with Mini-Mental State Examination score. DISCUSSION: CSF SCRN1 is a candidate biomarker of AD, reflecting tau pathology. HIGHLIGHTS: We developed a parallel reaction monitoring assay to measure secernin-1 (SCRN1) in cerebrospinal fluid (CSF). CSF SCRN1 was increased in Alzheimer's disease compared to healthy controls. CSF SCRN1 remained unchanged in Parkinson's disease, multiple system atrophy, progressive supranuclear palsy, or corticobasal degeneration compared to controls. CSF SCRN1 correlated strongly with CSF phosphorylated tau and total tau. CSF SCRN1 increased across Braak stages and negatively correlated with Mini-Mental State Examination score.
Subject(s)
Alzheimer Disease , Nerve Tissue Proteins , tau Proteins , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Biomarkers/cerebrospinal fluid , Biomarkers/metabolism , Corticobasal Degeneration/cerebrospinal fluid , Corticobasal Degeneration/metabolism , Corticobasal Degeneration/pathology , Multiple System Atrophy/cerebrospinal fluid , Multiple System Atrophy/metabolism , Multiple System Atrophy/pathology , Nerve Tissue Proteins/cerebrospinal fluid , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Parkinson Disease/cerebrospinal fluid , Parkinson Disease/genetics , Parkinson Disease/metabolism , Parkinson Disease/pathology , Supranuclear Palsy, Progressive/cerebrospinal fluid , Supranuclear Palsy, Progressive/genetics , Supranuclear Palsy, Progressive/metabolism , Supranuclear Palsy, Progressive/pathology , tau Proteins/cerebrospinal fluid , tau Proteins/metabolismABSTRACT
INTRODUCTION: Synaptic degeneration is a key part of the pathophysiology of neurodegenerative diseases, and biomarkers reflecting the pathological alterations are greatly needed. METHOD: Seventeen synaptic proteins were quantified in a pathology-confirmed cerebrospinal fluid cohort of patients with Alzheimer's disease (AD; n = 63), frontotemporal lobar degeneration (FTLD; n = 53), and Lewy body spectrum of disorders (LBD; n = 21), as well as healthy controls (HC; n = 48). RESULTS: Comparisons revealed four distinct patterns: markers decreased across all neurodegenerative conditions compared to HC (the neuronal pentraxins), markers increased across all neurodegenerative conditions (14-3-3 zeta/delta), markers selectively increased in AD compared to other neurodegenerative conditions (neurogranin and beta-synuclein), and markers selectively decreased in LBD and FTLD compared to HC and AD (AP2B1 and syntaxin-1B). DISCUSSION: Several of the synaptic proteins may serve as biomarkers for synaptic dysfunction in AD, LBD, and FTLD. Additionally, differential patterns of synaptic protein alterations seem to be present across neurodegenerative diseases. HIGHLIGHTS: A panel of synaptic proteins were quantified in the cerebrospinal fluid using mass spectrometry. We compared Alzheimer's disease, frontotemporal degeneration, and Lewy body spectrum of disorders. Pathology was confirmed by autopsy or familial mutations. We discovered synaptic biomarkers for synaptic degeneration and cognitive decline. We found differential patterns of synaptic proteins across neurodegenerative diseases.
Subject(s)
Alzheimer Disease , Frontotemporal Lobar Degeneration , Neurodegenerative Diseases , Humans , Alzheimer Disease/cerebrospinal fluid , Frontotemporal Lobar Degeneration/genetics , Neurogranin , Biomarkers/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluidABSTRACT
INTRODUCTION: Cerebrospinal fluid (CSF) biomarkers for specific cellular disease processes are lacking for tauopathies. In this translational study we aimed to identify CSF biomarkers reflecting early tau pathology-associated unfolded protein response (UPR) activation. METHODS: We employed mass spectrometry proteomics and targeted immunoanalysis in a combination of biomarker discovery in primary mouse neurons in vitro and validation in patient CSF from two independent large multicentre cohorts (EMIF-AD MBD, n = 310; PRIDE, n = 771). RESULTS: First, we identify members of the protein disulfide isomerase (PDI) family in the neuronal UPR-activated secretome and validate secretion upon tau aggregation in vitro. Next, we demonstrate that PDIA1 and PDIA3 levels correlate with total- and phosphorylated-tau levels in CSF. PDIA1 levels are increased in CSF from AD patients compared to controls and patients with tau-unrelated frontotemporal and Lewy body dementia (LBD). HIGHLIGHTS: Neuronal unfolded protein response (UPR) activation induces the secretion of protein disulfide isomerases (PDIs) in vitro. PDIA1 is secreted upon tau aggregation in neurons in vitro. PDIA1 and PDIA3 levels correlate with total and phosphorylated tau levels in CSF. PDIA1 levels are increased in CSF from Alzheimer's disease (AD) patients compared to controls. PDIA1 levels are not increased in CSF from tau-unrelated frontotemporal dementia (FTD) and Lewy body dementia (LBD) patients.
Subject(s)
Alzheimer Disease , Lewy Body Disease , Animals , Mice , Lewy Body Disease/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Protein Disulfide-Isomerases , Amyloid beta-Peptides/cerebrospinal fluid , Phosphorylation , Alzheimer Disease/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluidABSTRACT
BACKGROUND: Cerebrospinal fluid (CSF) is an important biofluid for biomarkers of neurodegenerative diseases such as Alzheimer's disease (AD). By employing tandem mass tag (TMT) proteomics, thousands of proteins can be quantified simultaneously in large cohorts, making it a powerful tool for biomarker discovery. However, TMT proteomics in CSF is associated with analytical challenges regarding sample preparation and data processing. In this study we address those challenges ranging from data normalization over sample preparation to sample analysis. METHOD: Using liquid chromatography coupled to mass-spectrometry (LC-MS), we analyzed TMT multiplex samples consisting of either identical or individual CSF samples, evaluated quantification accuracy and tested the performance of different data normalization approaches. We examined MS2 and MS3 acquisition strategies regarding accuracy of quantification and performed a comparative evaluation of filter-assisted sample preparation (FASP) and an in-solution protocol. Finally, four normalization approaches (median, quantile, Total Peptide Amount, TAMPOR) were applied to the previously published European Medical Information Framework Alzheimer's Disease Multimodal Biomarker Discovery (EMIF-AD MBD) dataset. RESULTS: The correlation of measured TMT reporter ratios with spiked-in standard peptide amounts was significantly lower for TMT multiplexes composed of individual CSF samples compared with those composed of aliquots of a single CSF pool, demonstrating that the heterogeneous CSF sample composition influences TMT quantitation. Comparison of TMT reporter normalization methods showed that the correlation could be improved by applying median- and quantile-based normalization. The slope was improved by acquiring data in MS3 mode, albeit at the expense of a 29% decrease in the number of identified proteins. FASP and in-solution sample preparation of CSF samples showed a 73% overlap in identified proteins. Finally, using optimized data normalization, we present a list of 64 biomarker candidates (clinical AD vs. controls, p < 0.01) identified in the EMIF-AD cohort. CONCLUSION: We have evaluated several analytical aspects of TMT proteomics in CSF. The results of our study provide practical guidelines to improve the accuracy of quantification and aid in the design of sample preparation and analytical protocol. The AD biomarker list extracted from the EMIF-AD cohort can provide a valuable basis for future biomarker studies and help elucidate pathogenic mechanisms in AD.
ABSTRACT
OBJECTIVES: The core cerebrospinal fluid (CSF) biomarkers; total tau (tTau), phospho-tau (pTau), amyloid ß 1-42 (Aß 1-42), and the Aß 1-42/Aß 1-40 ratio have transformed Alzheimer's disease (AD) research and are today increasingly used in clinical routine laboratories as diagnostic tools. Fully automated immunoassay instruments with ready-to-use assay kits and calibrators has simplified their analysis and improved reproducibility of measurements. We evaluated the analytical performance of the fully automated immunoassay instrument LUMIPULSE G (Fujirebio) for measurement of the four core AD CSF biomarkers and determined cutpoints for AD diagnosis. METHODS: Comparison of the LUMIPULSE G assays was performed with the established INNOTEST ELISAs (Fujirebio) for hTau Ag, pTau 181, ß-amyloid 1-42, and with V-PLEX Plus Aß Peptide Panel 1 (6E10) (Meso Scale Discovery) for Aß 1-42/Aß 1-40, as well as with a LC-MS reference method for Aß 1-42. Intra- and inter-laboratory reproducibility was evaluated for all assays. Clinical cutpoints for Aß 1-42, tTau, and pTau was determined by analysis of three cohorts of clinically diagnosed patients, comprising 651 CSF samples. For the Aß 1-42/Aß 1-40 ratio, the cutpoint was determined by mixture model analysis of 2,782 CSF samples. RESULTS: The LUMIPULSE G assays showed strong correlation to all other immunoassays (r>0.93 for all assays). The repeatability (intra-laboratory) CVs ranged between 2.0 and 5.6%, with the highest variation observed for ß-amyloid 1-40. The reproducibility (inter-laboratory) CVs ranged between 2.1 and 6.5%, with the highest variation observed for ß-amyloid 1-42. The clinical cutpoints for AD were determined to be 409 ng/L for total tau, 50.2 ng/L for pTau 181, 526 ng/L for ß-amyloid 1-42, and 0.072 for the Aß 1-42/Aß 1-40 ratio. CONCLUSIONS: Our results suggest that the LUMIPULSE G assays for the CSF AD biomarkers are fit for purpose in clinical laboratory practice. Further, they corroborate earlier presented reference limits for the biomarkers.
Subject(s)
Alzheimer Disease , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Humans , Immunoassay/methods , Peptide Fragments/cerebrospinal fluid , Reproducibility of Results , tau Proteins/cerebrospinal fluidABSTRACT
BACKGROUND: Suspected non-Alzheimer's disease pathophysiology (SNAP) is a biomarker concept that encompasses individuals with neuronal injury but without amyloidosis. We aim to investigate the pathophysiology of SNAP, defined as abnormal tau without amyloidosis, in individuals with mild cognitive impairment (MCI) by cerebrospinal fluid (CSF) proteomics. METHODS: Individuals were classified based on CSF amyloid beta (Aß)1-42 (A) and phosphorylated tau (T), as cognitively normal A-T- (CN), MCI A-T+ (MCI-SNAP), and MCI A+T+ (MCI-AD). Proteomics analyses, Gene Ontology (GO), brain cell expression, and gene expression analyses in brain regions of interest were performed. RESULTS: A total of 96 proteins were decreased in MCI-SNAP compared to CN and MCI-AD. These proteins were enriched for extracellular matrix (ECM), hemostasis, immune system, protein processing/degradation, lipids, and synapse. Fifty-one percent were enriched for expression in the choroid plexus. CONCLUSION: The pathophysiology of MCI-SNAP (A-T+) is distinct from that of MCI-AD. Our findings highlight the need for a different treatment in MCI-SNAP compared to MCI-AD.
ABSTRACT
Alzheimer's disease is biologically heterogeneous, and detailed understanding of the processes involved in patients is critical for development of treatments. CSF contains hundreds of proteins, with concentrations reflecting ongoing (patho)physiological processes. This provides the opportunity to study many biological processes at the same time in patients. We studied whether Alzheimer's disease biological subtypes can be detected in CSF proteomics using the dual clustering technique non-negative matrix factorization. In two independent cohorts (EMIF-AD MBD and ADNI) we found that 705 (77% of 911 tested) proteins differed between Alzheimer's disease (defined as having abnormal amyloid, n = 425) and controls (defined as having normal CSF amyloid and tau and normal cognition, n = 127). Using these proteins for data-driven clustering, we identified three robust pathophysiological Alzheimer's disease subtypes within each cohort showing (i) hyperplasticity and increased BACE1 levels; (ii) innate immune activation; and (iii) blood-brain barrier dysfunction with low BACE1 levels. In both cohorts, the majority of individuals were labelled as having subtype 1 (80, 36% in EMIF-AD MBD; 117, 59% in ADNI), 71 (32%) in EMIF-AD MBD and 41 (21%) in ADNI were labelled as subtype 2, and 72 (32%) in EMIF-AD MBD and 39 (20%) individuals in ADNI were labelled as subtype 3. Genetic analyses showed that all subtypes had an excess of genetic risk for Alzheimer's disease (all P > 0.01). Additional pathological comparisons that were available for a subset in ADNI suggested that subtypes showed similar severity of Alzheimer's disease pathology, and did not differ in the frequencies of co-pathologies, providing further support that found subtypes truly reflect Alzheimer's disease heterogeneity. Compared to controls, all non-demented Alzheimer's disease individuals had increased risk of showing clinical progression (all P < 0.01). Compared to subtype 1, subtype 2 showed faster clinical progression after correcting for age, sex, level of education and tau levels (hazard ratio = 2.5; 95% confidence interval = 1.2, 5.1; P = 0.01), and subtype 3 at trend level (hazard ratio = 2.1; 95% confidence interval = 1.0, 4.4; P = 0.06). Together, these results demonstrate the value of CSF proteomics in studying the biological heterogeneity in Alzheimer's disease patients, and suggest that subtypes may require tailored therapy.
Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Aged , Aged, 80 and over , Alzheimer Disease/classification , Amyloid Precursor Protein Secretases/cerebrospinal fluid , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/genetics , Aspartic Acid Endopeptidases/cerebrospinal fluid , Aspartic Acid Endopeptidases/genetics , Blood-Brain Barrier/pathology , Cluster Analysis , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/genetics , Cohort Studies , Disease Progression , Female , Humans , Longitudinal Studies , Male , Mental Status and Dementia Tests , Middle Aged , Neuropsychological Tests , Peptide Fragments/cerebrospinal fluid , Peptide Fragments/genetics , Proteomics , tau Proteins/cerebrospinal fluid , tau Proteins/geneticsABSTRACT
INTRODUCTION: Reference materials based on human cerebrospinal fluid were certified for the mass concentration of amyloid beta (Aß)1-42 (Aß42 ). They are intended to be used to calibrate diagnostic assays for Aß42 . METHODS: The three certified reference materials (CRMs), ERM-DA480/IFCC, ERM-DA481/IFCC and ERM-DA482/IFCC, were prepared at three concentration levels and characterized using isotope dilution mass spectrometry methods. Roche, EUROIMMUN, and Fujirebio used the three CRMs to re-calibrate their immunoassays. RESULTS: The certified Aß42 mass concentrations in ERM-DA480/IFCC, ERM-DA481/IFCC, and ERM-DA482/IFCC are 0.45, 0.72, and 1.22 µg/L, respectively, with expanded uncertainties (k = 2) of 0.07, 0.11, and 0.18 µg/L, respectively. Before re-calibration, a good correlation (Pearson's r > 0.97), yet large biases, were observed between results from different commercial assays. After re-calibration the between-assay bias was reduced to < 5%. DISCUSSION: The Aß42 CRMs can ensure the equivalence of results between methods and across platforms for the measurement of Aß42 .
Subject(s)
Amyloid beta-Peptides/cerebrospinal fluid , Immunoassay/standards , Calibration , Humans , Immunoassay/methods , Reference StandardsABSTRACT
Neurodegenerative dementias constitute a broad group of diseases in which abnormally folded proteins accumulate in specific brain regions and result in tissue reactions that eventually cause neuronal dysfunction and degeneration. Depending on where in the brain this happens, symptoms appear which may be used to classify the disorders on clinical grounds. However, brain changes in neurodegenerative dementias start to accumulate many years prior to symptom onset and there is a poor correlation between the clinical picture and what pathology that is the most likely to cause it. Thus, novel drug candidates having disease-modifying effects that is targeting the underlying pathology and changes the course of the disease needs to be defined using objective biomarker-based measures since the clinical symptoms are often non-specific and overlap between different disorders. Furthermore, the treatment should ideally be initiated as soon as symptoms are evident or when biomarkers confirm an underlying pathology (pre-clinical phase of the disease) to reduce irreversible damage to, for example, neurons, synapses and axons. Clinical trials in the pre-clinical phase bring a greater importance to biomarkers since by definition the clinical effects are difficult or slow to discern in a population that is not yet clinically affected. Here, we discuss neuropathological changes that may underlie neurodegenerative dementias, including how they can be detected and quantified using currently available biofluid-based biomarkers and how more of them could be identified using targeted proteomics approaches. This article is part of the special issue "Proteomics".
Subject(s)
Dementia , Neurodegenerative Diseases , Proteomics/methods , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , DNA-Binding Proteins/blood , DNA-Binding Proteins/cerebrospinal fluid , Dementia/metabolism , Dementia/pathology , Dementia/physiopathology , Humans , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , alpha-Synuclein/blood , alpha-Synuclein/cerebrospinal fluid , tau Proteins/blood , tau Proteins/cerebrospinal fluidABSTRACT
Tau is an axonal microtubule-binding protein. Tau pathology in brain and increased tau concentration in the cerebrospinal fluid (CSF) are hallmarks of Alzheimer's disease (AD). Most of tau in CSF is present as fragments. We immunoprecipitated tau from CSF and identified several endogenous peptides ending at amino acid (aa) 123 or 224 using high-resolution mass spectrometry. We raised neo-epitope-specific antibodies against tau fragments specifically ending at aa 123 and 224, respectively. With these antibodies, we performed immunohistochemistry on brain tissue and designed immunoassays measuring N-123, N-224, and x-224 tau. Immunoassays were applied to soluble brain fractions from pathologically confirmed subjects (81 AD patients, 33 controls), CSF from three cross-sectional and two longitudinal cohorts (a total of 133 AD, 38 MCI, 20 MCI-AD, 31 PSP, 15 CBS patients, and 91 controls), and neuronally- and peripherally-derived extracellular vesicles (NDEVs and PDEVs, respectively) in serum from four AD patients and four controls. Anti-tau 224 antibody stained neurofibrillary tangles and neuropil threads, while anti-tau 123 only showed weak cytoplasmic staining in AD. N-224 tau was lower in the AD soluble brain fraction compared to controls, while N-123 tau showed similar levels. N-224 tau was higher in AD compared to controls in all CSF cohorts (p < 0.001), but not N-123 tau. Decrease in cognitive performance and conversion from MCI to AD were associated with increased baseline CSF levels of N-224 tau (p < 0.0001). N-224 tau concentrations in PSP and CBS were significantly lower than in AD (p < 0.0001) and did not correlate to t-tau and p-tau. In a longitudinal cohort, CSF N-224 tau levels were stable over 6 months, with no significant effect of treatment with AChE inhibitors. N-224 tau was present in NDEVs, while N-123 tau showed comparable concentrations in both vesicle types. We suggest that N-123 tau is produced both in CNS and PNS and represents a general marker of tau metabolism, while N-224 tau is neuron-specific, present in the tangles, secreted in CSF, and upregulated in AD, suggesting a link between tau cleavage and propagation, tangle pathology, and cognitive decline.