Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nature ; 531(7594): 366-70, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26934221

ABSTRACT

Observing marine mammal (MM) populations continuously in time and space over the immense ocean areas they inhabit is challenging but essential for gathering an unambiguous record of their distribution, as well as understanding their behaviour and interaction with prey species. Here we use passive ocean acoustic waveguide remote sensing (POAWRS) in an important North Atlantic feeding ground to instantaneously detect, localize and classify MM vocalizations from diverse species over an approximately 100,000 km(2) region. More than eight species of vocal MMs are found to spatially converge on fish spawning areas containing massive densely populated herring shoals at night-time and diffuse herring distributions during daytime. We find the vocal MMs divide the enormous fish prey field into species-specific foraging areas with varying degrees of spatial overlap, maintained for at least two weeks of the herring spawning period. The recorded vocalization rates are diel (24 h)-dependent for all MM species, with some significantly more vocal at night and others more vocal during the day. The four key baleen whale species of the region: fin, humpback, blue and minke have vocalization rate trends that are highly correlated to trends in fish shoaling density and to each other over the diel cycle. These results reveal the temporospatial dynamics of combined multi-species MM foraging activities in the vicinity of an extensive fish prey field that forms a massive ecological hotspot, and would be unattainable with conventional methodologies. Understanding MM behaviour and distributions is essential for management of marine ecosystems and for accessing anthropogenic impacts on these protected marine species.


Subject(s)
Aquatic Organisms/physiology , Feeding Behavior , Fishes/physiology , Mammals/physiology , Predatory Behavior , Vocalization, Animal , Acoustics , Animals , Atlantic Ocean , Diet/veterinary , Ecosystem , Male , Time Factors , Whales/physiology
2.
Sensors (Basel) ; 20(6)2020 Mar 13.
Article in English | MEDLINE | ID: mdl-32183233

ABSTRACT

This paper presents the technological developments and the policy contexts for the project "Autonomous Robotic Sea-Floor Infrastructure for Bentho-Pelagic Monitoring" (ARIM). The development is based on the national experience with robotic component technologies that are combined and merged into a new product for autonomous and integrated ecological deep-sea monitoring. Traditional monitoring is often vessel-based and thus resource demanding. It is economically unviable to fulfill the current policy for ecosystem monitoring with traditional approaches. Thus, this project developed platforms for bentho-pelagic monitoring using an arrangement of crawler and stationary platforms at the Lofoten-Vesterålen (LoVe) observatory network (Norway). Visual and acoustic imaging along with standard oceanographic sensors have been combined to support advanced and continuous spatial-temporal monitoring near cold water coral mounds. Just as important is the automatic processing techniques under development that have been implemented to allow species (or categories of species) quantification (i.e., tracking and classification). At the same time, real-time outboard processed three-dimensional (3D) laser scanning has been implemented to increase mission autonomy capability, delivering quantifiable information on habitat features (i.e., for seascape approaches). The first version of platform autonomy has already been tested under controlled conditions with a tethered crawler exploring the vicinity of a cabled stationary instrumented garage. Our vision is that elimination of the tether in combination with inductive battery recharge trough fuel cell technology will facilitate self-sustained long-term autonomous operations over large areas, serving not only the needs of science, but also sub-sea industries like subsea oil and gas, and mining.


Subject(s)
Ecosystem , Environmental Monitoring/methods , Oceanography/methods , Oceans and Seas , Acoustics/instrumentation , Animals , Anthozoa/physiology , Humans , Robotics/instrumentation , Video Recording/methods
3.
J Acoust Soc Am ; 131(2): 1632-42, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22352533

ABSTRACT

Atlantic herring, Clupea harengus, is a hearing specialist, and several studies have demonstrated strong responses to man-made noise, for example, from an approaching vessel. To avoid negative impacts from naval sonar operations, a set of studies of reaction patters of herring to low-frequency (1.0-1.5 kHz) naval sonar signals has been undertaken. This paper presents herring reactions to sonar signals and other stimuli when kept in captivity under detailed acoustic and video monitoring. Throughout the experiment, spanning three seasons of a year, the fish did not react significantly to sonar signals from a passing frigate, at received root-mean-square sound-pressure level (SPL) up to 168 dB re 1 µPa. In contrast, the fish did exhibit a significant diving reaction when exposed to other sounds, with a much lower SPL, e.g., from a two-stroke engine. This shows that the experimental setup is sensitive to herring reactions when occurring. The lack of herring reaction to sonar signals is consistent with earlier in situ behavioral studies. The complexity of the behavioral reactions in captivity underline the need for better understanding of the causal relationship between stimuli and reaction patterns of fish.


Subject(s)
Behavior, Animal/physiology , Fishes/physiology , Sound , Acoustics , Animals , Environmental Exposure/adverse effects , Noise , Periodicity , Ships , Sound Spectrography , Time Factors
4.
J Acoust Soc Am ; 127(4): EL153-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20369983

ABSTRACT

The difference-frequency band of the Kongsberg TOPAS PS18 parametric sub-bottom profiling sonar, nominally 1-6 kHz, is being used to observe Atlantic herring. Representative TOPAS echograms of herring layers and schools observed in situ in December 2008 and November 2009 are presented. These agree well with echograms of volume backscattering strength derived simultaneously with the narrowband Simrad EK60/18- and 38-kHz scientific echo sounder, also giving insight into herring avoidance behavior in relation to survey vessel passage. Progress in rendering the TOPAS echograms quantitative is described.


Subject(s)
Acoustics , Behavior, Animal , Fishes/physiology , Radar , Social Behavior , Swimming , Acoustics/instrumentation , Animals , Atlantic Ocean , Avoidance Learning , Equipment Design , Norway , Population Density , Radar/instrumentation , Signal Processing, Computer-Assisted , Sound Spectrography , Time Factors , Transducers
5.
Evolution ; 56(4): 669-78, 2002 Apr.
Article in English | MEDLINE | ID: mdl-12038525

ABSTRACT

We present a new probabilistic concept of reaction norms for age and size at maturation that is applicable when observations are carried out at discrete time intervals. This approach can also be used to estimate reaction norms for age and size at metamorphosis or at other ontogenetic transitions. Such estimations are critical for understanding phenotypic plasticity and life-history changes in variable environments, assessing genetic changes in the presence of phenotypic plasticity, and calibrating size- and age-structured population models. We show that previous approaches to this problem, based on regressing size against age at maturation, give results that are systematically biased when compared to the probabilistic reaction norms. The bias can be substantial and is likely to lead to qualitatively incorrect conclusions; it is caused by failing to account for the probabilistic nature of the maturation process. We explain why, instead, robust estimations of maturation reaction norms should be based on logistic regression or on other statistical models that treat the probability of maturing as a dependent variable. We demonstrate the utility of our approach with two examples. First, the analysis of data generated for a known reaction norm highlights some crucial limitations of previous approaches. Second, application to the northeast arctic cod (Gadus morhua) illustrates how our approach can be used to shed new light on existing real-world data.


Subject(s)
Body Constitution , Fishes/growth & development , Growth , Models, Statistical , Age Factors , Animals , Fishes/anatomy & histology , Phenotype , Reference Values , Statistics as Topic
6.
Mar Pollut Bull ; 84(1-2): 236-50, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24908516

ABSTRACT

Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites.


Subject(s)
Anthozoa , Ecosystem , Environmental Monitoring/methods , Extraction and Processing Industry/methods , Petroleum/analysis , Water Pollutants, Chemical/chemistry , Animals , North Sea , Norway , Petroleum Pollution
7.
Science ; 323(5922): 1734-7, 2009 Mar 27.
Article in English | MEDLINE | ID: mdl-19325116

ABSTRACT

Similarities in the behavior of diverse animal species that form large groups have motivated attempts to establish general principles governing animal group behavior. It has been difficult, however, to make quantitative measurements of the temporal and spatial behavior of extensive animal groups in the wild, such as bird flocks, fish shoals, and locust swarms. By quantifying the formation processes of vast oceanic fish shoals during spawning, we show that (i) a rapid transition from disordered to highly synchronized behavior occurs as population density reaches a critical value; (ii) organized group migration occurs after this transition; and (iii) small sets of leaders significantly influence the actions of much larger groups. Each of these findings confirms general theoretical predictions believed to apply in nature irrespective of animal species.


Subject(s)
Behavior, Animal , Fishes/physiology , Swimming , Animal Migration , Animals , Atlantic Ocean , Ecosystem , Population Density , Reproduction , Spatial Behavior , Time Factors
8.
J Acoust Soc Am ; 121(4): EL145-50, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17471759

ABSTRACT

Behavior of herring (Clupea harengus) is stimulated by two ocean-going research vessels; respectively designed with and without regard to radiated-noise-standards. Both vessels generate a reaction pattern, but, contrary to expectations, the reaction initiated by the silent vessel is stronger and more prolonged than the one initiated by the conventional vessel. The recommendations from the scientific community on noise-reduced designs were motivated by the expectation of minimizing bias on survey results caused by vessel-induced fish behavior. In conclusion, the candidate stimuli for vessel avoidance remain obscure. Noise reduction might be necessary but is insufficient to obtain stealth vessel assets during surveys.


Subject(s)
Fishes/physiology , Motion , Noise/adverse effects , Research/instrumentation , Ships , Animals , Oceans and Seas , Ultrasonography/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL