ABSTRACT
Seasonal influenza vaccination elicits hemagglutinin (HA)-specific memory B (Bmem) cells, and although multiple Bmem cell populations have been characterized, considerable heterogeneity exists. We found that HA-specific human Bmem cells differed in the expression of surface marker FcRL5 and transcriptional factor T-bet. FcRL5+T-bet+ Bmem cells were transcriptionally similar to effector-like memory cells, while T-betnegFcRL5neg Bmem cells exhibited stem-like central memory properties. FcRL5+ Bmem cells did not express plasma-cell-commitment factors but did express transcriptional, epigenetic, metabolic, and functional programs that poised these cells for antibody production. Accordingly, HA+ T-bet+ Bmem cells at day 7 post-vaccination expressed intracellular immunoglobulin, and tonsil-derived FcRL5+ Bmem cells differentiated more rapidly into antibody-secreting cells (ASCs) in vitro. The T-bet+ Bmem cell response positively correlated with long-lived humoral immunity, and clonotypes from T-bet+ Bmem cells were represented in the secondary ASC response to repeat vaccination, suggesting that this effector-like population predicts influenza vaccine durability and recall potential.
Subject(s)
Influenza Vaccines , Influenza, Human , Humans , Influenza, Human/prevention & control , Antibody Formation , Memory B Cells , Vaccination , Immunologic Memory , Antibodies, ViralABSTRACT
BACKGROUND: The Ad26.COV2.S vaccine was highly effective against severe-critical coronavirus disease 2019 (Covid-19), hospitalization, and death in the primary phase 3 efficacy analysis. METHODS: We conducted the final analysis in the double-blind phase of our multinational, randomized, placebo-controlled trial, in which adults were assigned in a 1:1 ratio to receive single-dose Ad26.COV2.S (5×1010 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical Covid-19 with onset at least 14 days after administration and at least 28 days after administration in the per-protocol population. Safety and key secondary and exploratory end points were also assessed. RESULTS: Median follow-up in this analysis was 4 months; 8940 participants had at least 6 months of follow-up. In the per-protocol population (39,185 participants), vaccine efficacy against moderate to severe-critical Covid-19 at least 14 days after administration was 56.3% (95% confidence interval [CI], 51.3 to 60.8; 484 cases in the vaccine group vs. 1067 in the placebo group); at least 28 days after administration, vaccine efficacy was 52.9% (95% CI, 47.1 to 58.1; 433 cases in the vaccine group vs. 883 in the placebo group). Efficacy in the United States, primarily against the reference strain (B.1.D614G) and the B.1.1.7 (alpha) variant, was 69.7% (95% CI, 60.7 to 76.9); efficacy was reduced elsewhere against the P.1 (gamma), C.37 (lambda), and B.1.621 (mu) variants. Efficacy was 74.6% (95% CI, 64.7 to 82.1) against severe-critical Covid-19 (with only 4 severe-critical cases caused by the B.1.617.2 [delta] variant), 75.6% (95% CI, 54.3 to 88.0) against Covid-19 leading to medical intervention (including hospitalization), and 82.8% (95% CI, 40.5 to 96.8) against Covid-19-related death, with protection lasting 6 months or longer. Efficacy against any severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection was 41.7% (95% CI, 36.3 to 46.7). Ad26.COV2.S was associated with mainly mild-to-moderate adverse events, and no new safety concerns were identified. CONCLUSIONS: A single dose of Ad26.COV2.S provided 52.9% protection against moderate to severe-critical Covid-19. Protection varied according to variant; higher protection was observed against severe Covid-19, medical intervention, and death than against other end points and lasted for 6 months or longer. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).
Subject(s)
Ad26COVS1 , COVID-19/prevention & control , Vaccine Efficacy/statistics & numerical data , Ad26COVS1/adverse effects , Ad26COVS1/immunology , Adolescent , Adult , COVID-19/epidemiology , COVID-19/mortality , Double-Blind Method , Follow-Up Studies , Hospitalization/statistics & numerical data , Humans , Immunogenicity, Vaccine , Kaplan-Meier Estimate , Middle Aged , Patient Acuity , SARS-CoV-2 , Young AdultABSTRACT
Despite their importance, natural killer (NK) cell responses are frequently dysfunctional during human immunodeficiency virus-1 (HIV-1) and simian immunodeficiency virus (SIV) infections, even irrespective of antiretroviral therapies, with poorly understood underlying mechanisms. NK cell surface receptor modulation in lentivirus infection has been extensively studied, but a deeper interrogation of complex cell signaling is mostly absent, largely due to the absence of any comprehensive NK cell signaling assay. To fill this knowledge gap, we developed a novel multiplex signaling analysis to broadly assess NK cell signaling. Using this assay, we elucidated that NK cells exhibit global signaling reduction from CD16 both in people living with HIV-1 (PLWH) and SIV-infected rhesus macaques. Intriguingly, antiretroviral treatment did not fully restore diminished CD16 signaling in NK cells from PLWH. As a putative mechanism, we demonstrated that NK cells increased surface ADAM17 expression via elevated plasma IL-18 levels during HIV-1 infection, which in turn reduced surface CD16 downregulation. We also illustrated that CD16 expression and signaling can be restored by ADAM17 perturbation. In summary, our multiplex NK cell signaling analysis delineated unique NK cell signaling perturbations specific to lentiviral infections, resulting in their dysfunction. Our analysis also provides mechanisms that will inform the restoration of dysregulated NK cell functions, offering potential insights for the development of new NK cell-based immunotherapeutics for HIV-1 disease.
Subject(s)
HIV-1 , Lentivirus Infections , Animals , Humans , Down-Regulation , Interleukin-18 , Macaca mulatta , Killer Cells, Natural , Signal Transduction , ADAM17 ProteinABSTRACT
BACKGROUND: There are currently no validated clinical biomarkers of postacute sequelae of SARS-CoV-2 infection (PASC). OBJECTIVE: To investigate clinical laboratory markers of SARS-CoV-2 and PASC. DESIGN: Propensity score-weighted linear regression models were fitted to evaluate differences in mean laboratory measures by prior infection and PASC index (≥12 vs. 0). (ClinicalTrials.gov: NCT05172024). SETTING: 83 enrolling sites. PARTICIPANTS: RECOVER-Adult cohort participants with or without SARS-CoV-2 infection with a study visit and laboratory measures 6 months after the index date (or at enrollment if >6 months after the index date). Participants were excluded if the 6-month visit occurred within 30 days of reinfection. MEASUREMENTS: Participants completed questionnaires and standard clinical laboratory tests. RESULTS: Among 10 094 participants, 8746 had prior SARS-CoV-2 infection, 1348 were uninfected, 1880 had a PASC index of 12 or higher, and 3351 had a PASC index of zero. After propensity score adjustment, participants with prior infection had a lower mean platelet count (265.9 × 109 cells/L [95% CI, 264.5 to 267.4 × 109 cells/L]) than participants without known prior infection (275.2 × 109 cells/L [CI, 268.5 to 282.0 × 109 cells/L]), as well as higher mean hemoglobin A1c (HbA1c) level (5.58% [CI, 5.56% to 5.60%] vs. 5.46% [CI, 5.40% to 5.51%]) and urinary albumin-creatinine ratio (81.9 mg/g [CI, 67.5 to 96.2 mg/g] vs. 43.0 mg/g [CI, 25.4 to 60.6 mg/g]), although differences were of modest clinical significance. The difference in HbA1c levels was attenuated after participants with preexisting diabetes were excluded. Among participants with prior infection, no meaningful differences in mean laboratory values were found between those with a PASC index of 12 or higher and those with a PASC index of zero. LIMITATION: Whether differences in laboratory markers represent consequences of or risk factors for SARS-CoV-2 infection could not be determined. CONCLUSION: Overall, no evidence was found that any of the 25 routine clinical laboratory values assessed in this study could serve as a clinically useful biomarker of PASC. PRIMARY FUNDING SOURCE: National Institutes of Health.
Subject(s)
Biomarkers , COVID-19 , Post-Acute COVID-19 Syndrome , SARS-CoV-2 , Humans , COVID-19/complications , COVID-19/diagnosis , COVID-19/blood , Male , Female , Middle Aged , Biomarkers/blood , Propensity Score , Aged , Adult , Glycated Hemoglobin/analysis , Cohort StudiesABSTRACT
Coronavirus disease 2019 (COVID-19) vaccines reduce severe disease and mortality and may lessen transmission, measured by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load (VL). Evaluating vaccine associations in VL at COVID-19 diagnosis in 4 phase 3 randomized, placebo-controlled vaccine trials, July 2020 to July 2021, VL reductions were 2.78 log10 copies/mL (95% confidence interval [CI], 1.38-4.18; n = 60 placebo, 11 vaccine) and 2.12 log10 copies/mL (95% CI, 1.44-2.80; n = 594 placebo, 36 vaccine) for NVX-CoV2373 and mRNA-1273, respectively. Associations were not significant for AZD1222 (0.59 log10 copies/mL; 95% CI, -.19 to 1.36; n = 90 placebo, 78 vaccine) or Ad26.COV2.S (0.23 log10 copies/mL; 95% CI, -.01 to .47; n = 916 placebo, 424 vaccine). Thus, vaccines potentially decreased transmission when ancestral SARS-CoV-2 predominated. Clinical Trials Registration. NCT04470427, NCT04505722, NCT04516746, NCT04611802.
ABSTRACT
BACKGROUND: Although the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines are highly efficacious at preventing severe disease in the general population, current data are lacking regarding vaccine efficacy (VE) for individuals with mild immunocompromising conditions. METHODS: A post hoc, cross-protocol analysis of participant-level data from the blinded phase of four randomized, placebo-controlled, coronavirus disease 2019 (COVID-19) vaccine phase 3 trials (Moderna, AstraZeneca, Janssen, and Novavax) was performed. We defined a "tempered immune system" (TIS) variable via a consensus panel based on medical history and medications to determine VE against symptomatic and severe COVID-19 cases in TIS participants versus non-TIS individuals starting at 14 days after completion of the primary series through the blinded phase for each of the 4 trials. An analysis of participants living with well-controlled human immunodeficiency virus was conducted using the same methods. RESULTS: A total of 3852/30 351 (12.7%) Moderna participants, 3088/29 868 (10.3%) Novavax participants, 3549/32 380 (11.0%) AstraZeneca participants, and 5047/43 788 (11.5%) Janssen participants were identified as having a TIS. Most TIS conditions (73.9%) were due to metabolism and nutritional disorders. Vaccination (vs placebo) significantly reduced the likelihood of symptomatic and severe COVID-19 for all participants for each trial. VE was not significantly different for TIS participants versus non-TIS for either symptomatic or severe COVID-19 for each trial, nor was VE significantly different in the symptomatic endpoint for participants with human immunodeficiency virus. CONCLUSIONS: For individuals with mildly immunocompromising conditions, there is no evidence of differences in VE against symptomatic or severe COVID-19 compared with those with non-TIS in the 4 COVID-19 vaccine randomized controlled efficacy trials.
Subject(s)
COVID-19 Vaccines , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Humans , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Male , Female , SARS-CoV-2/immunology , Middle Aged , Adult , Immunocompromised Host , Aged , Randomized Controlled Trials as TopicABSTRACT
For COVAIL recipients of a COVID-19 Sanofi booster vaccine, neutralizing antibody titers were assessed as a correlate of risk (CoR) of COVID-19. Peak and exposure-proximal titers were inverse CoRs with covariate-adjusted hazard ratios (95% confidence intervals) 0.30 (0.11, 0.78) and 0.25 (0.07, 0.85) per 10-fold increase in weighted average titer.
ABSTRACT
BACKGROUND: Broadly neutralizing antibodies (bnAbs) are a promising approach for HIV-1 prevention. In the Antibody Mediated Prevention (AMP) trials, a CD4-binding site targeting bnAb, VRC01, administered intravenously (IV), demonstrated 75% prevention efficacy against highly neutralization-sensitive viruses but was ineffective against less sensitive viruses. VRC07-523LS is a next-generation bnAb targeting the CD4-binding site and was engineered for increased neutralization breadth and half-life. We conducted a multicenter, randomized, partially blinded Phase I clinical trial to evaluate the safety and serum concentrations of VRC07-523LS, administered in multiple doses and routes to healthy adults without HIV. METHODS AND FINDINGS: Participants were recruited between 2 February 2018 and 9 October 2018. A total of 124 participants were randomized to receive 5 VRC07-523LS administrations via IV (T1: 2.5 mg/kg, T2: 5 mg/kg, T3: 20 mg/kg), subcutaneous (SC) (T4: 2.5 mg/kg, T5: 5 mg/kg), or intramuscular (IM) (T6: 2.5 mg/kg or P6: placebo) routes at 4-month intervals. Participants and site staff were blinded to VRC07-523LS versus placebo for the IM group, while all other doses and routes were open-label. Safety data were collected for 144 weeks following the first administration. VRC07-523LS serum concentrations were measured by ELISA through Day 112 in all participants and by binding antibody multiplex assay (BAMA) thereafter in 60 participants (10 per treatment group) through Day 784. Compartmental population pharmacokinetic (PK) analyses were conducted to evaluate the VRC07-523LS serum PK. Neutralization activity was measured in a TZM-bl assay and antidrug antibodies (ADAs) were assayed using a tiered bridging assay testing strategy. Injections and infusions were well tolerated, with mild pain or tenderness reported commonly in the SC and IM groups, and mild to moderate erythema or induration reported commonly in the SC groups. Infusion reactions were reported in 3 of 20 participants in the 20 mg/kg IV group. Peak geometric mean (GM) concentrations (95% confidence intervals [95% CIs]) following the first administration were 29.0 µg/mL (25.2, 33.4), 58.5 µg/mL (49.4, 69.3), and 257.2 µg/mL (127.5, 518.9) in T1-T3 with IV dosing; 10.8 µg/mL (8.8, 13.3) and 22.8 µg/mL (20.1, 25.9) in T4-T5 with SC dosing; and 16.4 µg/mL (14.7, 18.2) in T6 with IM dosing. Trough GM (95% CIs) concentrations immediately prior to the second administration were 3.4 µg/mL (2.5, 4.6), 6.5 µg/mL (5.6, 7.5), and 27.2 µg/mL (23.9, 31.0) with IV dosing; 0.97 µg/mL (0.65, 1.4) and 3.1 µg/mL (2.2, 4.3) with SC dosing, and 2.6 µg/mL (2.05, 3.31) with IM dosing. Peak VRC07-523LS serum concentrations increased linearly with the administered dose. At a given dose, peak and trough concentrations, as well as serum neutralization titers, were highest in the IV groups, reflecting the lower bioavailability following SC and IM administration. A single participant was found to have low titer ADA at a lone time point. VRC07-523LS has an estimated mean half-life of 42 days across all doses and routes (95% CI: 40.5, 43.5), over twice as long as VRC01 (15 days). CONCLUSIONS: VRC07-523LS was safe and well tolerated across a range of doses and routes and is a promising long-acting bnAb for inclusion in HIV-1 prevention regimens. TRIAL REGISTRATION: ClinicalTrials.gov/ NCT03387150 (posted on 21 December 2017).
Subject(s)
Antibodies, Neutralizing , HIV Antibodies , Humans , Male , Female , Adult , Antibodies, Neutralizing/blood , HIV Antibodies/blood , Middle Aged , HIV Infections/drug therapy , HIV Infections/immunology , HIV-1/immunology , Young Adult , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Adolescent , Injections, IntramuscularABSTRACT
BACKGROUND: Adjuvants are widely used to enhance and/or direct vaccine-induced immune responses yet rarely evaluated head-to-head. Our trial directly compared immune responses elicited by MF59 versus alum adjuvants in the RV144-like HIV vaccine regimen modified for the Southern African region. The RV144 trial of a recombinant canarypox vaccine vector expressing HIV env subtype B (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost adjuvanted with alum is the only trial to have shown modest HIV vaccine efficacy. Data generated after RV144 suggested that use of MF59 adjuvant might allow lower protein doses to be used while maintaining robust immune responses. We evaluated safety and immunogenicity of an HIV recombinant canarypox vaccine vector expressing HIV env subtype C (ALVAC-HIV) prime followed by ALVAC-HIV plus a bivalent gp120 protein vaccine boost (gp120) adjuvanted with alum (ALVAC-HIV+gp120/alum) or MF59 (ALVAC-HIV+gp120/MF59) or unadjuvanted (ALVAC-HIV+gp120/no-adjuvant) and a regimen where ALVAC-HIV+gp120 adjuvanted with MF59 was used for the prime and boost (ALVAC-HIV+gp120/MF59 coadministration). METHODS AND FINDINGS: Between June 19, 2017 and June 14, 2018, 132 healthy adults without HIV in South Africa, Zimbabwe, and Mozambique were randomized to receive intramuscularly: (1) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/MF59 (months 3, 6, and 12), n = 36; (2) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/alum (months 3, 6, and 12), n = 36; (3) 4 doses of ALVAC-HIV+gp120/MF59 coadministered (months 0, 1, 6, and 12), n = 36; or (4) 2 priming doses of ALVAC-HIV (months 0 and 1) followed by 3 booster doses of ALVAC-HIV+gp120/no adjuvant (months 3, 6, and 12), n = 24. Primary outcomes were safety and occurrence and mean fluorescence intensity (MFI) of vaccine-induced gp120-specific IgG and IgA binding antibodies at month 6.5. All vaccinations were safe and well-tolerated; increased alanine aminotransferase was the most frequent related adverse event, occurring in 2 (1.5%) participants (1 severe, 1 mild). At month 6.5, vaccine-specific gp120 IgG binding antibodies were detected in 100% of vaccinees for all 4 vaccine groups. No significant differences were seen in the occurrence and net MFI of vaccine-specific IgA responses between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/alum-prime-boost groups or between the ALVAC-HIV+gp120/MF59-prime-boost and ALVAC-HIV+gp120/MF59 coadministration groups. Limitations were the relatively small sample size per group and lack of evaluation of higher gp120 doses. CONCLUSIONS: Although MF59 was expected to enhance immune responses, alum induced similar responses to MF59, suggesting that the choice between these adjuvants may not be critical for the ALVAC+gp120 regimen. TRIAL REGISTRATION: HVTN 107 was registered with the South African National Clinical Trials Registry (DOH-27-0715-4894) and ClinicalTrials.gov (NCT03284710).
Subject(s)
AIDS Vaccines , Alum Compounds , HIV Infections , HIV-1 , Polysorbates , Squalene , Adult , Humans , Adjuvants, Immunologic , AIDS Vaccines/adverse effects , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, Vaccine , Immunoglobulin A , Immunoglobulin G , Vaccines, Combined , Vaccines, SyntheticABSTRACT
BACKGROUND: The Ad26.COV2.S vaccine is a recombinant, replication-incompetent human adenovirus type 26 vector encoding full-length severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein in a prefusion-stabilized conformation. METHODS: In an international, randomized, double-blind, placebo-controlled, phase 3 trial, we randomly assigned adult participants in a 1:1 ratio to receive a single dose of Ad26.COV2.S (5×1010 viral particles) or placebo. The primary end points were vaccine efficacy against moderate to severe-critical coronavirus disease 2019 (Covid-19) with an onset at least 14 days and at least 28 days after administration among participants in the per-protocol population who had tested negative for SARS-CoV-2. Safety was also assessed. RESULTS: The per-protocol population included 19,630 SARS-CoV-2-negative participants who received Ad26.COV2.S and 19,691 who received placebo. Ad26.COV2.S protected against moderate to severe-critical Covid-19 with onset at least 14 days after administration (116 cases in the vaccine group vs. 348 in the placebo group; efficacy, 66.9%; adjusted 95% confidence interval [CI], 59.0 to 73.4) and at least 28 days after administration (66 vs. 193 cases; efficacy, 66.1%; adjusted 95% CI, 55.0 to 74.8). Vaccine efficacy was higher against severe-critical Covid-19 (76.7% [adjusted 95% CI, 54.6 to 89.1] for onset at ≥14 days and 85.4% [adjusted 95% CI, 54.2 to 96.9] for onset at ≥28 days). Despite 86 of 91 cases (94.5%) in South Africa with sequenced virus having the 20H/501Y.V2 variant, vaccine efficacy was 52.0% and 64.0% against moderate to severe-critical Covid-19 with onset at least 14 days and at least 28 days after administration, respectively, and efficacy against severe-critical Covid-19 was 73.1% and 81.7%, respectively. Reactogenicity was higher with Ad26.COV2.S than with placebo but was generally mild to moderate and transient. The incidence of serious adverse events was balanced between the two groups. Three deaths occurred in the vaccine group (none were Covid-19-related), and 16 in the placebo group (5 were Covid-19-related). CONCLUSIONS: A single dose of Ad26.COV2.S protected against symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection and was effective against severe-critical disease, including hospitalization and death. Safety appeared to be similar to that in other phase 3 trials of Covid-19 vaccines. (Funded by Janssen Research and Development and others; ENSEMBLE ClinicalTrials.gov number, NCT04505722.).
Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , Immunogenicity, Vaccine , Ad26COVS1 , Adolescent , Adult , Aged , Asymptomatic Diseases/epidemiology , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , Double-Blind Method , Female , Hospitalization/statistics & numerical data , Humans , Incidence , Male , Middle Aged , Patient Acuity , Proportional Hazards Models , Young AdultABSTRACT
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.
Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Neutralizing/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Humans , Mice , SARS-CoV-2 , Weight LossABSTRACT
BACKGROUND: Developing a cross-clade, globally effective HIV vaccine remains crucial for eliminating HIV. METHODS: This placebo-controlled, double-blind, phase 1/2a study enrolled healthy HIV-uninfected adults at low risk for HIV infection. They were randomized (1:4:1) to receive 4 doses of an adenovirus 26-based HIV-1 vaccine encoding 2 mosaic Gag and Pol, and 2 mosaic Env proteins plus adjuvanted clade C gp140 (referred to here as clade C regimen), bivalent protein regimen (clade C regimen plus mosaic gp140), or placebo. Primary end points were safety and antibody responses. RESULTS: In total 152/155 participants (clade C, n = 26; bivalent protein, n = 103; placebo, n = 26) received ≥1 injection. The highest adverse event (AE) severity was grade 3 (local pain/tenderness, 12%, 2%, and 0% of the respective groups; solicited systemic AEs, 19%, 15%, 0%). HIV-1 mosaic gp140-binding antibody titers were 79 595 ELISA units (EU)/mL and 137 520 EU/mL in the clade C and bivalent protein groups (P < .001) after dose 4 and 16 862 EU/mL and 25 162 EU/mL 6 months later. Antibody response breadth against clade C gp140 and clade C/non-clade C gp120 was highest in the bivalent protein group. CONCLUSIONS: Adding mosaic gp140 to the clade C regimen increased and broadened the elicited immune response without compromising safety or clade C responses. Clinical Trials Registration. NCT02935686.
Subject(s)
AIDS Vaccines , HIV Infections , HIV-1 , Adult , Humans , Genetic Vectors , HIV Antibodies , HIV Infections/prevention & control , Immunogenicity, VaccineABSTRACT
We compared the serologic responses of 1 dose versus 2 doses of a variant vaccine (Moderna mRNA-1273 Beta/Omicron BA.1 bivalent vaccine) in adults. A 2-dose boosting regimen with a variant vaccine did not increase the magnitude or the durability of the serological responses compared to a single variant vaccine boost.
Subject(s)
2019-nCoV Vaccine mRNA-1273 , Adult , Humans , Vaccines, Combined , Clinical Protocols , RNA, Messenger/geneticsABSTRACT
In a randomized clinical trial, we compare early neutralizing antibody responses after boosting with bivalent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines based on either BA.1 or BA.4/BA.5 Omicron spike protein combined with wild-type spike. Responses against SARS-CoV-2 variants exhibited the greatest reduction in titers against currently circulating Omicron subvariants for both bivalent vaccines.
Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Antibodies, Neutralizing , Vaccines, Combined , Antibodies, ViralABSTRACT
BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (ß2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS: CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.
Subject(s)
COVID-19 , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , 2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , Prospective Studies , SARS-CoV-2 , COVID-19/prevention & control , VaccinationABSTRACT
Epitopes with evidence of HLA-II-associated adaptation induce poorly immunogenic CD4+ T-cell responses in HIV-positive (HIV+) individuals. Many such escaped CD4+ T-cell epitopes are encoded by HIV-1 vaccines being evaluated in clinical trials. Here, we assessed whether this viral adaptation adversely impacts CD4+ T-cell responses following HIV-1 vaccination, thereby representing escaped epitopes. When evaluated in separate peptide pools, vaccine-encoded adapted epitopes (AE) induced CD4+ T-cell responses less frequently than nonadapted epitopes (NAE). We also demonstrated that in a polyvalent vaccine, where both forms of the same epitope were encoded, AE were less immunogenic. NAE-specific CD4+ T cells had increased, albeit low, levels of interferon gamma (IFN-γ) cytokine production. Single-cell transcriptomic analyses showed that NAE-specific CD4+ T cells expressed interferon-related genes, while AE-specific CD4+ T cells resembled a Th2 phenotype. Importantly, the magnitude of NAE-specific CD4+ T-cell responses, but not that of AE-specific responses, was found to positively correlate with Env-specific antibodies in a vaccine efficacy trial. Together, these findings show that HLA-II-associated viral adaptation reduces CD4+ T-cell responses in HIV-1 vaccine recipients and suggest that vaccines encoding a significant number of AE may not provide optimal B-cell help for HIV-specific antibody production. IMPORTANCE Despite decades of research, an effective HIV-1 vaccine remains elusive. Vaccine strategies leading to the generation of broadly neutralizing antibodies are likely needed to provide the best opportunity of generating a protective immune response against HIV-1. Numerous studies have demonstrated that T-cell help is necessary for effective antibody generation. However, immunogen sequences from recent HIV-1 vaccine efficacy trials include CD4+ T-cell epitopes that have evidence of immune escape. Our study shows that these epitopes, termed adapted epitopes, elicit lower frequencies of CD4+ T-cell responses in recipients from multiple HIV-1 vaccine trials. Additionally, the counterparts to these epitopes, termed nonadapted epitopes, elicited CD4+ T-cell responses that correlated with Env-specific antibodies in one efficacy trial. These results suggest that vaccine-encoded adapted epitopes dampen CD4+ T-cell responses, potentially impacting both HIV-specific antibody production and efficacious vaccine efforts.
Subject(s)
AIDS Vaccines , Antibody Formation , CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HIV Infections , HIV-1 , HLA-D Antigens , Immune Evasion , AIDS Vaccines/immunology , Broadly Neutralizing Antibodies/immunology , CD4-Positive T-Lymphocytes/immunology , Clinical Trials as Topic , Epitopes, T-Lymphocyte/immunology , HIV Antibodies/biosynthesis , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , HIV-1/immunology , HLA-D Antigens/immunology , HumansABSTRACT
T-cell immunity is likely to play a role in protection against SARS-CoV-2 by helping generate neutralizing antibodies. We longitudinally studied CD4 T-cell responses to the M, N, and S structural proteins of SARS-CoV-2 in 26 convalescent individuals. Within the first two months following symptom onset, a majority of individuals (81%) mounted at least one CD4 T-cell response, and 48% of individuals mounted detectable SARS-CoV-2-specific circulating T follicular helper cells (cTfh, defined as CXCR5+PD1+ CD4 T cells). SARS-CoV-2-specific cTfh responses across all three protein specificities correlated with antibody neutralization with the strongest correlation observed for S protein-specific responses. When examined over time, cTfh responses, particularly to the M protein, increased in convalescence, and robust cTfh responses with magnitudes greater than 5% were detected at the second convalescent visit, a median of 38 days post-symptom onset. CD4 T-cell responses declined but persisted at low magnitudes three months and six months after symptom onset. These data deepen our understanding of antigen-specific cTfh responses in SARS-CoV-2 infection, suggesting that in addition to S protein, M and N protein-specific cTfh may also assist in the development of neutralizing antibodies and that cTfh response formation may be delayed in SARS-CoV-2 infection.
Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , T Follicular Helper Cells/virology , Adult , Aged , Antibody Specificity , Case-Control Studies , Coronavirus Nucleocapsid Proteins/immunology , Female , Host Microbial Interactions/immunology , Humans , Longitudinal Studies , Male , Middle Aged , Pandemics , Phosphoproteins/immunology , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Viral Matrix Proteins/immunology , Young AdultABSTRACT
This secondary analysis of the phase 3 ENSEMBLE trial (NCT04505722) assessed the impact of preexisting humoral immunity to adenovirus 26 (Ad26) on the immunogenicity of Ad26.COV2.S-elicited severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific antibody levels in 380 participants in Brazil, South Africa, and the United States. Among those vaccinated in Brazil and South Africa, 31% and 66%, respectively, had prevaccination serum-neutralizing activity against Ad26, with little preexisting immunity detected in the United States. Vaccine recipients in each country had similar postvaccination spike (S) protein-binding antibody levels, indicating that baseline immunity to Ad26 has no clear impact on vaccine-induced immune responses.
Subject(s)
Adenoviridae Infections , COVID-19 , Ad26COVS1 , Adenoviridae , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Genetic Vectors , Humans , Immunity, Cellular , Immunity, Humoral , Immunogenicity, Vaccine , SARS-CoV-2ABSTRACT
HIV frequently escapes CD8 T cell responses, leading to the accumulation of viral adaptations. We recently demonstrated that during chronic HIV infection, adapted epitopes can promote maturation of dendritic cells (DCs) through direct CD8 T cell interactions and lead to enhanced HIV trans-infection of CD4 T cells. Here, we sought to determine the role of such adaptations following HIV MRKAd5 vaccination. We observed that vaccine-induced adapted epitope-specific CD8 T cells promoted higher levels of DC maturation than nonadapted ones and that these matured DCs significantly enhanced HIV trans-infection. These matured DCs were associated with higher levels of interleukin 5 (IL-5) and IL-13 and a lower level of CXCL5, which have been shown to impact DC maturation, as well as a lower level of CXCL16. Finally, we observed that vaccine recipients with high HLA-I-associated adaptation became HIV infected more quickly. Our results offer another possible mechanism for enhanced infection among MRKAd5 vaccinees. IMPORTANCE Despite the well-established contribution of CD8 T cells in HIV control, prior CD8 T cell-based HIV vaccines have failed to demonstrate any efficacy in preventing viral infection. One such vaccine, known as the MRKAd5 vaccine, showed a potential increased risk of viral infection among vaccine recipients. However, the underlying mechanism(s) remains unclear. In this study, we observed that vaccine recipients with high adaptation to their HLA-I alleles were associated with an increased HIV infection risk in comparison to the others. Similar to what we observed in HIV infection in the prior study, adapted epitope-specific CD8 T cells obtained from vaccine recipients exhibit a greater capacity in facilitating viral infection by promoting dendritic cell maturation. Our findings provide a possible explanation for the enhanced viral acquisition risk among MRKAd5 vaccine recipients and highlight the importance of optimizing vaccine design with consideration of HLA-I-associated HIV adaptation.
Subject(s)
AIDS Vaccines/immunology , Adaptation, Physiological/immunology , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , Adult , Alleles , Cytokines/metabolism , Dendritic Cells/immunology , HIV Infections/prevention & control , HIV Infections/virology , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Kaplan-Meier Estimate , Male , Viral Load , Young AdultABSTRACT
Alloimmune responses in kidney transplant (KT) patients previously hospitalized with COVID-19 are understudied. We analyzed a cohort of 112 kidney transplant recipients who were hospitalized following a positive SARS-CoV-2 test result during the first 20 months of the COVID-19 pandemic. We found a cumulative incidence of 17% for the development of new donor-specific antibodies (DSA) or increased levels of pre-existing DSA in hospitalized SARS-CoV-2-infected KT patients. This risk extended 8 months post-infection. These changes in DSA status were associated with late allograft dysfunction. Risk factors for new or increased DSA responses in this KT patient cohort included the presence of circulating DSA pre-COVID-19 diagnosis and time post-transplantation. COVID-19 vaccination prior to infection and remdesivir administration during infection were each associated with decreased likelihood of developing a new or increased DSA response. These data show that new or enhanced DSA responses frequently occur among KT patients requiring admission with COVID-19 and suggest that surveillance, vaccination, and antiviral therapies may be important tools to prevent alloimmunity in these individuals.