Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Genesis ; 60(1-2): e23466, 2022 02.
Article in English | MEDLINE | ID: mdl-35104045

ABSTRACT

Allocation of cells to an endodermal fate in the gastrulating embryo is driven by Nodal signaling and consequent activation of TGFß pathway. In vitro methodologies striving to recapitulate the process of endoderm differentiation, however, use TGFß family member Activin in place of Nodal. This is despite Activin not known to have an in vivo role in endoderm differentiation. In this study, five epiblast stem cell lines were subjected to directed differentiation using both Activin A and Nodal to induce endodermal fate. A reporter line harboring endoderm markers FoxA2 and Sox17 was further analyzed for TGFß pathway activation and WNT response. We demonstrated that Activin A-treated cells remain more primitive streak-like when compared to Nodal-treated cells that have a molecular profile suggestive of more advanced differentiation. Activin A elicited a robust TGFß/SMAD activity, enhanced WNT signaling activity and promoted the generation of DE precursors. Nodal treatment resulted in lower TGFß/SMAD activity, and a weaker, sustained WNT response, and ultimately failed to upregulate endoderm markers. This is despite signaling response resembling more closely the activity seen in vivo. These findings emphasize the importance of understanding the downstream activities of Activin A and Nodal signaling in directing in vitro endoderm differentiation of primed-state epiblast stem cells.


Subject(s)
Endoderm , Nodal Protein , Activins/metabolism , Activins/pharmacology , Cell Differentiation/physiology , Endoderm/metabolism , Germ Layers , Nodal Protein/genetics , Nodal Protein/metabolism , Stem Cells/metabolism , Transforming Growth Factor beta
2.
Development ; 146(7)2019 04 05.
Article in English | MEDLINE | ID: mdl-30890572

ABSTRACT

During embryogenesis, the stringent regulation of Wnt activity is crucial for the morphogenesis of the head and brain. The loss of function of the Wnt inhibitor Dkk1 results in elevated Wnt activity, loss of ectoderm lineage attributes from the anterior epiblast, and the posteriorisation of anterior germ layer tissue towards the mesendoderm. The modulation of Wnt signalling may therefore be crucial for the allocation of epiblast cells to ectoderm progenitors during gastrulation. To test this hypothesis, we examined the lineage characteristics of epiblast stem cells (EpiSCs) that were derived and maintained under different signalling conditions. We showed that suppression of Wnt activity enhanced the ectoderm propensity of the EpiSCs. Neuroectoderm differentiation of these EpiSCs was further empowered by the robust re-activation of Wnt activity. Therefore, during gastrulation, the tuning of the signalling activities that mediate mesendoderm differentiation is instrumental for the acquisition of ectoderm potency in the epiblast.


Subject(s)
Cell Differentiation/physiology , Ectoderm/cytology , Germ Layers/cytology , Animals , Cell Differentiation/genetics , Cells, Cultured , Ectoderm/metabolism , Gastrulation/genetics , Gastrulation/physiology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Germ Layers/metabolism , Mice , Signal Transduction/genetics , Signal Transduction/physiology
4.
J Cell Sci ; 127(Pt 10): 2204-16, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24481813

ABSTRACT

Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.


Subject(s)
Ectoderm/metabolism , Endoderm/cytology , Endoderm/enzymology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Culture Techniques , Cell Differentiation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/enzymology , Gastrulation , Mice , Signal Transduction
5.
Biores Open Access ; 3(3): 98-109, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24940561

ABSTRACT

Endoderm formation in the mammalian embryo occurs first in the blastocyst, when the primitive endoderm and pluripotent cells resolve into separate lineages, and again during gastrulation, when the definitive endoderm progenitor population emerges from the primitive streak. The formation of the definitive endoderm can be modeled using pluripotent cell differentiation in culture. The differentiation of early primitive ectoderm-like (EPL) cells, a pluripotent cell population formed from embryonic stem (ES) cells, was used to identify and characterize definitive endoderm formation. Expression of serine peptidase inhibitor, Kazal type 3 (Spink3) was detected in EPL cell-derived endoderm, and in a band of endoderm immediately distal to the embryonic-extra-embryonic boundary in pregastrula and gastrulating embryos. Later expression marked a region of endoderm separating the yolk sac from the developing gut. In the embryo, Spink3 expression marked a region of endoderm comprising the distal visceral endoderm, as determined by an endocytosis assay, and the proximal region of the definitive endoderm. This region was distinct from the more distal definitive endoderm population, marked by thyrotropin-releasing hormone (Trh). Endoderm expressing either Spink3 or Trh could be formed during EPL cell differentiation, and the prevalence of these populations could be influenced by culture medium and growth factor addition. Moreover, further differentiation suggested that the potential of these populations differed. These approaches have revealed an unexpected complexity in the definitive endoderm lineage, a complexity that will need to be accommodated in differentiation protocols to ensure the formation of the appropriate definitive endoderm progenitor in the future.

6.
Philos Trans R Soc Lond B Biol Sci ; 369(1657)2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25349457

ABSTRACT

Mouse epiblast stem cells (EpiSCs) display temporal differences in the upregulation of Mixl1 expression during the initial steps of in vitro differentiation, which can be correlated with their propensity for endoderm differentiation. EpiSCs that upregulated Mixl1 rapidly during differentiation responded robustly to both Activin A and Nodal in generating foregut endoderm and precursors of pancreatic and hepatic tissues. By contrast, EpiSCs that delayed Mixl1 upregulation responded less effectively to Nodal and showed an overall suboptimal outcome of directed differentiation. The enhancement in endoderm potency in Mixl1-early cells may be accounted for by a rapid exit from the progenitor state and the efficient response to the induction of differentiation by Nodal. EpiSCs that readily differentiate into the endoderm cells are marked by a distinctive expression fingerprint of transforming growth factor (TGF)-ß signalling pathway genes and genes related to the endoderm lineage. Nodal appears to elicit responses that are associated with transition to a mesenchymal phenotype, whereas Activin A promotes gene expression associated with maintenance of an epithelial phenotype. We postulate that the formation of definitive endoderm (DE) in embryoid bodies follows a similar process to germ layer formation from the epiblast, requiring an initial de-epithelialization event and subsequent re-epithelialization. Our results show that priming EpiSCs with the appropriate form of TGF-ß signalling at the formative phase of endoderm differentiation impacts on the further progression into mature DE-derived lineages, and that this is influenced by the initial characteristics of the cell population. Our study also highlights that Activin A, which is commonly used as an in vitro surrogate for Nodal in differentiation protocols, does not elicit the same downstream effects as Nodal, and therefore may not effectively mimic events that take place in the mouse embryo.


Subject(s)
Cell Differentiation/physiology , Embryonic Stem Cells/metabolism , Endoderm/embryology , Gene Expression Regulation, Developmental/physiology , Germ Layers/embryology , Inhibin-beta Subunits/metabolism , Nodal Protein/metabolism , Animals , Endoderm/cytology , Gene Expression Regulation, Developmental/genetics , Germ Layers/cytology , Homeodomain Proteins/metabolism , Mice , Signal Transduction/physiology , Transforming Growth Factor beta/metabolism
7.
PLoS One ; 7(6): e38645, 2012.
Article in English | MEDLINE | ID: mdl-22701686

ABSTRACT

Two lineages of endoderm develop during mammalian embryogenesis, the primitive endoderm in the pre-implantation blastocyst and the definitive endoderm at gastrulation. This complexity of endoderm cell populations is mirrored during pluripotent cell differentiation in vitro and has hindered the identification and purification of the definitive endoderm for use as a substrate for further differentiation. The aggregation and differentiation of early primitive ectoderm-like (EPL) cells, resulting in the formation of EPL-cell derived embryoid bodies (EPLEBs), is a model of gastrulation that progresses through the sequential formation of primitive streak-like intermediates to nascent mesoderm and more differentiated mesoderm populations. EPL cell-derived EBs have been further analysed for the formation of definitive endoderm by detailed morphological studies, gene expression and a protein uptake assay. In comparison to embryoid bodies derived from ES cells, which form primitive and definitive endoderm, the endoderm compartment of embryoid bodies formed from EPL cells was comprised almost exclusively of definitive endoderm. Definitive endoderm was defined as a population of squamous cells that expressed Sox17, CXCR4 and Trh, which formed without the prior formation of primitive endoderm and was unable to endocytose horseradish peroxidase from the medium. Definitive endoderm formed in EPLEBs provides a substrate for further differentiation into specific endoderm lineages; these lineages can be used as research tools for understanding the mechanisms controlling lineage establishment and the nature of the transient intermediates formed. The similarity between mouse EPL cells and human ES cells suggests EPLEBs can be used as a model system for the development of technologies to enrich for the formation of human ES cell-derived definitive endoderm in the future.


Subject(s)
Cell Culture Techniques/methods , Cell Differentiation/physiology , Embryoid Bodies/ultrastructure , Endoderm/ultrastructure , Mesoderm/ultrastructure , Pluripotent Stem Cells/ultrastructure , Primitive Streak/ultrastructure , Animals , DNA Primers/genetics , Flow Cytometry , Gene Expression Profiling , Horseradish Peroxidase/pharmacokinetics , Mice , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Pluripotent Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL