Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Int J Mol Sci ; 24(9)2023 May 05.
Article in English | MEDLINE | ID: mdl-37176034

ABSTRACT

We have previously published research on the anti-viral properties of an alkaloid mixture extracted from Nuphar lutea, the major components of the partially purified mixture found by NMR analysis. These are mostly dimeric sesquiterpene thioalkaloids called thiobinupharidines and thiobinuphlutidines against the negative strand RNA measles virus (MV). We have previously reported that this extract inhibits the MV as well as its ability to downregulate several MV proteins in persistently MV-infected cells, especially the P (phospho)-protein. Based on our observation that the Nuphar extract is effective in vitro against the MV, and the immediate need that the coronavirus disease 2019 (COVID-19) pandemic created, we tested here the ability of 6,6'-dihydroxythiobinupharidine DTBN, an active small molecule, isolated from the Nuphar lutea extract, on COVID-19. As shown here, DTBN effectively inhibits SARS-CoV-2 production in Vero E6 cells at non-cytotoxic concentrations. The short-term daily administration of DTBN to infected mice delayed the occurrence of severe clinical outcomes, lowered virus levels in the lungs and improved survival with minimal changes in lung histology. The viral load on lungs was significantly reduced in the treated mice. DTBN is a pleiotropic small molecule with multiple targets. Its anti-inflammatory properties affect a variety of pathogens including SARS-CoV-2 as shown here. Its activity appears to target both pathogen specific (as suggested by docking analysis) as well as cellular proteins, such as NF-κB, PKCs, cathepsins and topoisomerase 2, that we have previously identified in our work. Thus, this combined double action of virus inhibition and anti-inflammatory activity may enhance the overall effectivity of DTBN. The promising results from this proof-of-concept in vitro and in vivo preclinical study should encourage future studies to optimize the use of DTBN and/or its molecular derivatives against this and other related viruses.


Subject(s)
Alkaloids , COVID-19 , Nuphar , Mice , Animals , SARS-CoV-2 , Nuphar/chemistry , Alkaloids/pharmacology , Alkaloids/therapeutic use , Alkaloids/chemistry , Plant Extracts/pharmacology , Anti-Inflammatory Agents/pharmacology , Mice, Transgenic
2.
Molecules ; 26(16)2021 Aug 05.
Article in English | MEDLINE | ID: mdl-34443335

ABSTRACT

The specificity of inhibition by 6,6'-dihydroxythiobinupharidine (DTBN) on cysteine proteases was demonstrated in this work. There were differences in the extent of inhibition, reflecting active site structural-steric and biochemical differences. Cathepsin S (IC50 = 3.2 µM) was most sensitive to inhibition by DTBN compared to Cathepsin B, L and papain (IC50 = 1359.4, 13.2 and 70.4 µM respectively). DTBN is inactive for the inhibition of Mpro of SARS-CoV-2. Docking simulations suggested a mechanism of interaction that was further supported by the biochemical results. In the docking results, it was shown that the cysteine sulphur of Cathepsin S, L and B was in close proximity to the DTBN thiaspirane ring, potentially forming the necessary conditions for a nucleophilic attack to form a disulfide bond. Covalent docking and molecular dynamic simulations were performed to validate disulfide bond formation and to determine the stability of Cathepsins-DTBN complexes, respectively. The lack of reactivity of DTBN against SARS-CoV-2 Mpro was attributed to a mismatch of the binding conformation of DTBN to the catalytic binding site of Mpro. Thus, gradations in reactivity among the tested Cathepsins may be conducive for a mechanism-based search for derivatives of nupharidine against COVID-19. This could be an alternative strategy to the large-scale screening of electrophilic inhibitors.


Subject(s)
Alkaloids/pharmacology , Cysteine Proteases/metabolism , Alkaloids/chemistry , Animals , Antiviral Agents/pharmacology , Binding Sites , COVID-19/metabolism , Catalytic Domain , Cathepsins/pharmacology , Cell Line, Tumor , Cysteine Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Humans , Mice , Molecular Docking Simulation/methods , Nuphar/chemistry , Papain/pharmacology , Plant Extracts/pharmacology , Protein Binding , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
3.
Molecules ; 26(9)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066895

ABSTRACT

Water lily (Nuphar) bioactive extracts have been widely used in traditional medicine owing to their multiple applications against human ailments. Phyto-active Nuphar extracts and their purified and synthetic derivatives have attracted the attention of ethnobotanists and biochemists. Here, we report that 6,6'-dihydroxythiobinupharidine (DTBN), purified from extracts of Nuphar lutea (L.) Sm. leaves, is an effective inhibitor of the kinase activity of members of the protein kinase C (PKC) family using in vitro and in silico approaches. We demonstrate that members of the conventional subfamily of PKCs, PKCα and PKCγ, were more sensitive to DTBN inhibition as compared to novel or atypical PKCs. Molecular docking analysis demonstrated the interaction of DTBN, with the kinase domain of PKCs depicting the best affinity towards conventional PKCs, in accordance with our in vitro kinase activity data. The current study reveals novel targets for DTBN activity, functioning as an inhibitor for PKCs kinase activity. Thus, this and other data indicate that DTBN modulates key cellular signal transduction pathways relevant to disease biology, including cancer.


Subject(s)
Alkaloids/pharmacology , Isoenzymes/antagonists & inhibitors , Nuphar/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Alkaloids/chemistry , Alkaloids/isolation & purification , Crystallography, X-Ray , HEK293 Cells , Humans , Inhibitory Concentration 50 , Isoenzymes/chemistry , Molecular Docking Simulation , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Protein Binding , Protein Kinase C/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/isolation & purification , Signal Transduction/drug effects
4.
Molecules ; 25(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260270

ABSTRACT

Different parts of Nuphar lutea L. (yellow water lily) have been used to treat several inflammatory and pathogen-related diseases. It has shown that Nuphar lutea extracts (NUP) are active against various pathogens including bacteria, fungi, and leishmanial parasites. In an effort to detect novel therapeutic agents against negative-stranded RNA (- RNA) viruses, we have tested the effect of a partially-purified alkaloid mixture of Nuphar lutea leaves on the measles virus (MV). The MV vaccine's Edmonston strain was used to acutely or persistently infect cells. The levels of several MV proteins were detected by a Western blot and immunocytochemistry. Viral RNAs were quantitated by qRT-PCR. Virus infectivity was monitored by infecting African green monkey kidney VERO cells' monolayers. We showed that NUP protected cells from acute infection. Decreases in the MV P-, N-, and V-proteins were observed in persistently infected cells and the amount of infective virus released was reduced as compared to untreated cells. By examining viral RNAs, we suggest that NUP acts at the post-transcriptional level. We conclude, as a proof of concept, that NUP has anti-viral therapeutic activity against the MV. Future studies will determine the mechanism of action and the effect of NUP on other related viruses.


Subject(s)
Alkaloids/pharmacology , Antiviral Agents/pharmacology , Measles virus/growth & development , Nuphar/chemistry , Alkaloids/chemistry , Animals , Antiviral Agents/chemistry , Chlorocebus aethiops , Gene Expression Regulation, Viral/drug effects , Measles virus/drug effects , Measles virus/genetics , Plant Extracts/chemistry , Proof of Concept Study , RNA, Viral/drug effects , Vero Cells , Viral Proteins/drug effects , Viral Proteins/metabolism
5.
J Exp Bot ; 70(21): 6245-6259, 2019 11 18.
Article in English | MEDLINE | ID: mdl-31504768

ABSTRACT

In plants, dioecy characterizes species that carry male and female flowers on separate plants and it occurs in about 6% of angiosperms; however, the molecular mechanisms that underlie dioecy are essentially unknown. The ability for sex-reversal by hormone application raises the hypothesis that the genes required for the expression of both sexes are potentially functional but are regulated by epigenetic means. In this study, proteomic analysis of nuclear proteins isolated from flower buds of females, males, and feminized males of the dioecious plant Mercurialis annua revealed differential expression of nuclear proteins that are implicated in chromatin structure and function, including floral homeotic proteins. Focusing on floral genes, we found that class B genes were mainly expressed in male flowers, while class D genes, as well as SUPERMAN-like genes, were mainly expressed in female flowers. Cytokinin-induced feminization of male plants was associated with down-regulation of male-specific genes concomitantly with up-regulation of female-specific genes. No correlation was found between the expression of class B and D genes and the changes in DNA methylation or chromatin conformation of these genes. Thus, we could not confirm DNA methylation or chromatin conformation of floral genes to be the major determinant regulating sexual dimorphisms. Instead, determination of sex in M. annua might be controlled upstream of floral genes by one or more sex-specific factors that affect hormonal homeostasis. A comprehensive model is proposed for sex-determination in M. annua.


Subject(s)
Epigenesis, Genetic , Euphorbiaceae/genetics , Genes, Homeobox , Genes, Plant , Sex Characteristics , Cell Nucleus/metabolism , Chromatin/metabolism , Flowers/genetics , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Proteome/metabolism , Transcription, Genetic
6.
Bioorg Med Chem Lett ; 29(15): 1881-1885, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31182315

ABSTRACT

A number of natural products with medicinal properties increase DNA cleavage mediated by type II topoisomerases. In an effort to identify additional natural compounds that affect the activity of human type II topoisomerases, a blind screen of a library of 341 Mediterranean plant extracts was conducted. Extracts from Nuphar lutea, the yellow water lily, were identified in this screen. N. lutea has been used in traditional medicine by a variety of indigenous populations. The active compound in N. lutea, 6,6'-dihydroxythiobinupharidine, was found to enhance DNA cleavage mediated by human topoisomerase IIα and IIß âˆ¼8-fold and ∼3-fold, respectively. Mechanistic studies with topoisomerase IIα indicate that 6,6'-dihydroxythiobinupharidine is a "covalent poison" that acts by adducting the enzyme outside of the DNA cleavage-ligation active site and requires the N-terminal domain of the protein for its activity. Results suggest that some of the medicinal properties of N. lutea may result from the interactions between 6,6'-dihydroxythiobinupharidine and the human type II enzymes.


Subject(s)
Alkaloids/adverse effects , DNA Topoisomerases, Type II/drug effects , Plant Extracts/adverse effects , Humans , Poisons
7.
J Clin Periodontol ; 46(1): 62-71, 2019 01.
Article in English | MEDLINE | ID: mdl-30372545

ABSTRACT

OBJECTIVES: Nupharidine (6,6'-Dihydroxythiobinupharidine), purified from the aquatic plant Nuphar lutea leaves (Water lily) prompts antimicrobial activity of immune cells. The aim of the study was to test the effect of Nupharidine on neutrophil function against Aggregatibacter actinomycetemcomitans, JP2 clone (Aa-JP2). METHODS: Neutrophils derived from the human cell line HL60 and human peripheral blood derived from aggressive periodontitis and periodontally healthy subjects were incubated with Nupharidine or vehicle and inoculated with JP2. Bacterial survival was tested using viable counts on blood agar (CFU's). Neutrophils' necrosis/apoptosis, reactive oxygen species (ROS) production, phagocytosis and neutrophil extracellular traps (NET) production following infection were tested, as well as markers of neutrophil priming. RESULTS: Nupharidine had no direct bactericidal effect on JP2, but it enhanced Aa-JP2 clearance by neutrophils. Nupharidine enhanced neutrophil phagocytosis, ROS production and NET formation during JP2 infection. Furthermore, Nupharidine enhanced the expression of certain markers of neutrophils priming, specifically iCAM1, DECTIN-2 and intracellular IL-1ß. CONCLUSION: Nupharidine was shown to promote neutrophil effector bactericidal functions, boosting Aa-JP2 clearance. The results point to the potential of Nupharidine as an adjunctive agent in the treatment of Aa-JP2 periodontitis, but this should be tested initially using pre-clinical and clinical studies.


Subject(s)
Aggregatibacter actinomycetemcomitans , Aggressive Periodontitis , Humans , Interleukin-1beta , Neutrophils , Phagocytosis
8.
Biochemistry ; 54(29): 4531-41, 2015 Jul 28.
Article in English | MEDLINE | ID: mdl-26132160

ABSTRACT

Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10-100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption.


Subject(s)
DNA Topoisomerases, Type II/chemistry , Olea/chemistry , Plant Extracts/chemistry , Topoisomerase II Inhibitors/chemistry , DNA Cleavage , Drug Screening Assays, Antitumor , Fruit/chemistry , Glucosides/chemistry , Humans , Iridoid Glucosides , Iridoids/chemistry , Phenols/chemistry , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Plant Bark/chemistry , Plant Leaves/chemistry , Plasmids/chemistry
9.
Pathogens ; 13(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38787236

ABSTRACT

Cutaneous leishmaniasis (CL) is a zoonotic disease, manifested as chronic ulcers, potentially leaving unattractive scars. There is no preventive vaccination or optimal medication against leishmaniasis. Chemotherapy generally depends upon a small group of compounds, each with its own efficacy, toxicity, and rate of drug resistance. To date, no standardized, simple, safe, and highly effective regimen for treating CL exists. Therefore, there is an urgent need to develop new optimal medication for this disease. Sesquiterpen thio-alkaloids constitute a group of plant secondary metabolites that bear great potential for medicinal uses. The nupharidines found in Nuphar lutea belong to this group of compounds. We have previously published that Nuphar lutea semi-purified extract containing major components of nupharidines has strong anti-leishmanial activity in vitro. Here, we present in vivo data on the therapeutic benefit of the extract against Leishmania major (L. major) in infected mice. We also expanded these observations by establishing the therapeutic effect of the extract-purified nupharidine 6,6'-dihydroxythiobinupharidine (DTBN) in vitro against promastigotes and intracellular amastigotes as well as in vivo in L. major-infected mice. The results suggest that this novel anti-parasitic small molecule has the potential to be further developed against Leishmania.

10.
Sci Rep ; 14(1): 7577, 2024 03 30.
Article in English | MEDLINE | ID: mdl-38555397

ABSTRACT

Chronic Kidney Disease (CKD) associated complications are associated with increased inflammation through the innate immune response, which can be modulated with anti-inflammatory agents. An active ingredient derived from the Nuphar lutea aquatic plant, 6,6'-dihydroxythiobinupharidine (DTBN) has anti-inflammatory properties, mainly through the inhibition of NF-κB. We tested the effects of DTBN on mice with CKD. After preliminary safety and dosing experiments, we exposed 8 weeks old male C57BL/6J mice to adenine diet to induce CKD. Control and CKD animals were treated with IP injections of DTBN (25 µg QOD) or saline and sacrificed after 8 weeks. Serum urea and creatinine were significantly decreased in CKD-DTBN Vs CKD mice. Kidney histology showed a decrease in F4/80 positive macrophage infiltration, damaged renal area, as well as decreased kidney TGF-ß in CKD-DTBN Vs CKD mice. Kidney inflammation indices (IL-1ß, IL-6 and P-STAT3) were significantly decreased in CKD-DTBN as compared to CKD mice. DTBN treatment showed no apparent damage to tissues in control mice, besides a decrease in weight gain and mild hypoalbuminemia without proteinuria. Thus, DTBN significantly improved renal failure and inflammation indices in CKD mice. Therefore, this and similar substances may be considered as an additional treatment in CKD patients.


Subject(s)
Alkaloids , Nuphar , Renal Insufficiency, Chronic , Humans , Mice , Animals , Mice, Inbred C57BL , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/pathology , Kidney/pathology , Inflammation/pathology , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal
11.
Ann Bot ; 109(1): 247-55, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22039007

ABSTRACT

BACKGROUND AND AIMS: The ecological, evolutionary and genetic bases of population differentiation in a variable environment are often related to the selection pressures that plants experience. We compared differences in several growth- and defence-related traits in two isolated populations of Acacia raddiana trees from sites at either end of an extreme environmental gradient in the Negev desert. METHODS: We used random amplified polymorphic DNA (RAPD) to determine the molecular differences between populations. We grew plants under two levels of water, three levels of nutrients and three levels of herbivory to test for phenotypic plasticity and adaptive phenotypic plasticity. KEY RESULTS: The RAPD analyses showed that these populations are highly genetically differentiated. Phenotypic plasticity in various morphological traits in A. raddiana was related to patterns of population genetic differentiation between the two study sites. Although we did not test for maternal effects in these long-lived trees, significant genotype × environment (G × E) interactions in some of these traits indicated that such plasticity may be adaptive. CONCLUSIONS: The main selection pressure in this desert environment, perhaps unsurprisingly, is water. Increased water availability resulted in greater growth in the southern population, which normally receives far less rain than the northern population. Even under the conditions that we defined as low water and/or nutrients, the performance of the seedlings from the southern population was significantly better, perhaps reflecting selection for these traits. Consistent with previous studies of this genus, there was no evidence of trade-offs between physical and chemical defences and plant growth parameters in this study. Rather, there appeared to be positive correlations between plant size and defence parameters. The great variation in several traits in both populations may result in a diverse potential for responding to selection pressures in different environments.


Subject(s)
Acacia/growth & development , Acacia/genetics , Adaptation, Physiological/genetics , Biological Evolution , Desert Climate , Ecology , Gene-Environment Interaction , Genetic Variation , Genetics, Population , Israel , Phenotype , Rain
12.
Water Sci Technol ; 66(10): 2138-45, 2012.
Article in English | MEDLINE | ID: mdl-22949244

ABSTRACT

The present study was carried out to investigate the growth characteristics of different ryegrass (Lolium perenne L.) cultivars and their ability to remediate eutrophic water using floating plant-bed technology. Greenhouse and lake experiments were conducted to evaluate the grass genotypes for water remediation. Twelve cultivars of ryegrass including Grazer, Secale Cerale, Energa, Rustmaster, AngusI, Abundant, AngusII, Jivet, Gulf, Surrey, Major and Barwoltra were grown in the floating plant-bed system. The plant biomass, plant NP (nitrogen and phosphorus) accumulations and the water purification capacity of selected grasses were significantly different (P < 0.05). Abundant, AngusII and Major showed most efficient purification capacity of eutrophic water. In a greenhouse, after 26 days of growth, the eutrophic water was purified to various extents by the different ryegrass cultivars. Nitrogen removal efficiency varied from 52.20% to 73.82% and phosphorus removal efficiency ranged from 75.12% to 84.77%. In a lake experiment at Huajiachi pond, after 162 days of growth, the plant shoot biomass increased from 321.5 to 922.8 g/m(2) dry weight basis, shoot NP accumulation ranged from 61.5 to 168.2 mg m(-2) d(-1) and 11.9 to 47.2 mg m(-2) d(-1) respectively. NP accumulation rate by the various cultivars of ryegrass was highly positively correlated to their biomass production and water purification capacity. Thus, plant biomass could be used as an indicator for assessing purification capacity of a ryegrass cultivar.


Subject(s)
Eutrophication , Lolium/metabolism , Water Purification/methods , Water/chemistry , Biodegradation, Environmental , Biomass , Nitrogen/chemistry , Nitrogen/metabolism , Phosphorus/chemistry , Phosphorus/metabolism , Time Factors , Waste Disposal, Fluid/methods
13.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35455407

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a purified thioalkaloid 6,6'-dihydroxythiobinupharidine (DTBN). Treatment with 0.3-10 µg/mL NUP caused a dose- and time-dependent reduction in proliferation and viability of human AML cells (KG-1a, HL60 and U937). This was associated with apoptosis induction manifested by annexin-V/propidium iodide binding as well as cleavage of caspases 8, 9, and 3 as well as poly (ADP-ribose) polymerase. Caspase-dependence of the apoptotic effect was confirmed using the pan-caspase inhibitor Q-VD-OPH. NUP induced significant biphasic changes in the cytosolic levels of reactive oxygen species (ROS) compared to untreated cells-a decrease at early time points (2-4 h) and an increase after a longer incubation (24 h). ROS accumulation was accompanied by lowering the cellular glutathione (GSH) levels. In addition, NUP treatment resulted in elevation of the cytosolic Ca2+ (Ca2+cyt) levels. The thiol antioxidant and glutathione precursor N-acetyl cysteine prevented NUP-induced ROS accumulation and markedly inhibited apoptosis. A similar antiapoptotic effect was obtained by Ca2+cyt chelating using BAPTA. These data indicate that NUP-induced cell death is mediated, at least in part, by the induction of oxidative stress and Ca2+cyt accumulation. However, a substantial apoptotic activity of pure DTBN (0.05-0.25 µg/mL), was found to be independent of cytosolic ROS or Ca2+, suggesting that alternative mechanisms are involved in DTBN-induced cytotoxicity. Notably, neither NUP nor DTBN treatment significantly induced cell death of normal human peripheral blood mononuclear cells. Our results provide the basis for further investigation of the antileukemic potential of NUP and its active constituents.

14.
Exp Parasitol ; 126(4): 510-6, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20515684

ABSTRACT

Here we report the effect of a partially purified alkaloid fraction (NUP) of Nuphar lutea on nuclear factor kappa B (NF-κB) expression and studied its mechanism of toxicity against Leishmania major in C3H mice peritoneal macrophages. NUP was found to be a mixture of thermo-stable dimeric sesquiterpene thioalkaloids containing mainly thionupharidines. The anti-leishmanial activity was shown to be mediated through the activation of NF-κB and increased iNOS production. Additionally, the nitric oxide inhibitor, N(G)-monomethyl-L-arginine (0.5mM) totally reverted the anti-leishmanial effect of NUP (0.25 and 0.5µg/ml). NUP was also shown to act as an anti-oxidant, almost completely inhibiting the macrophage respiratory burst activity. However, no elevated lysozyme (EC3.2.1.17) or ß-galactosidase (EC3.2.1.23) activities were demonstrated in macrophages treated with NUP. This study suggests, that the activity of NUP is mediated by NF-κB activation and the production of nitric oxide which is dependent on the L-arginine:NO pathway.


Subject(s)
Leishmania major/drug effects , NF-kappa B/drug effects , Nuphar/chemistry , Plant Extracts/pharmacology , Animals , Blotting, Western , Cells, Cultured , Enzyme Inhibitors/pharmacology , Immunohistochemistry , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/metabolism , Macrophages, Peritoneal/parasitology , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C3H , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/metabolism , Respiratory Burst/drug effects , omega-N-Methylarginine/pharmacology
15.
Phytochemistry ; 68(22-24): 2816-24, 2007.
Article in English | MEDLINE | ID: mdl-17681562

ABSTRACT

Cut seedlings of Mercurialis annua L. were supplied with solutions containing 5.4mM [U-(13)C(6)]glucose and 50 mM unlabelled glucose. The pyridinone type chromogen, hermidin, was isolated and analyzed by NMR spectroscopy. (13)C NMR spectra revealed the presence of [4,5,6-(13)C(3)]hermidin in significant amount. NMR analysis of amino acids obtained by hydrolysis of labelled biomass showed the presence of [U-(13)C(3)]alanine, whereas aspartate was found to be virtually unlabelled. Photosynthetic pulse labelling of M. annua plants with (13)CO(2) followed by a chase period in normal air afforded [4,5,6-(13)C(3)]- and [2,3-(13)C(2)]hermidin with significant abundance. [U-(13)C(3)]Alanine and multiply (13)C-labelled aspartate isotopologues were also found in significant abundance. The labelling patterns of hermidin obtained in the present study closely resemble those observed for the pyridine ring of nicotine under similar experimental conditions. This suggests that hermidin, like nicotine, is biosynthesized via the nicotinic acid pathway from dihydroxyacetone phosphate and aspartate. The data show that pulse/chase labelling of plants with (13)CO(2) generates isotopologue patterns that are similar to those obtained with totally labelled carbohydrate as tracer, but with the added advantage that experiments can be conducted under strictly physiological conditions. This experimental concept appears ripe for application to a wide variety of problems in plant physiology.


Subject(s)
Euphorbiaceae/chemistry , Pyridones/isolation & purification , Carbon Dioxide/chemistry , Gas Chromatography-Mass Spectrometry , Glucose/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Nicotinic Acids/chemistry , Oxidation-Reduction , Pyridones/chemistry
16.
J Cancer ; 8(8): 1433-1440, 2017.
Article in English | MEDLINE | ID: mdl-28638458

ABSTRACT

Nuphar lutea L. SM., leaf and rhizome extracts (NUP), contain nupharidines as active components. Nupharidines belong to the sesquiterpene lactones class of a naturally occurring plant terpenoids. This family of compounds has gained considerable interest for treating infection, inflammation and cancer. NF-κB is a central, downstream regulator of inflammation, cell proliferation and apoptosis. In our previous work we demonstrated strong inhibition of NF-κB activity and induction of apoptosis by NUP. In addition, NUP exhibited anti-inflammatory properties and partial protection from LPS-induced septic shock by modulating ERK pathway and cytokine secretion in macrophages. In the present study, we examined the effect of NUP in a B16 melanoma experimental murine lung metastasis model and its ability to affect the ERK and NF-κB pathways in variety of cell lines. We showed that NUP and cisplatin combined treatment was synergistic and reduced the lung metastatic load. In addition NUP treatment inhibited TNFα-induced IκBα degradation and NF- κB nuclear translocation. We also observed that NUP induced ERK activation. Furthermore, ERK inhibition prevented NF-κB inactivation by NUP. Overall, our work implies that co-administration of NF-κB inhibitors such as NUP, with standard anti-cancer drugs, may act as "sensitizers" for more effective chemotherapy.

17.
Metabolites ; 6(2)2016 Apr 26.
Article in English | MEDLINE | ID: mdl-27128954

ABSTRACT

The research presented stemmed from the observations that female plants of the annual dioecious Mercurialis annua outlive male plants. This led to the hypothesis that female plants of M. annua would be more tolerant to stress than male plants. This hypothesis was addressed in a comprehensive way, by comparing morphological, biochemical and metabolomics changes in female and male plants during their development and under salinity. There were practically no differences between the genders in vegetative development and physiological parameters. However, under salinity conditions, female plants produced significantly more new reproductive nodes. Gender-linked differences in peroxidase (POD) and glutathione transferases (GSTs) were involved in anti-oxidation, detoxification and developmental processes in M. annua. ¹H NMR metabolite profiling of female and male M. annua plants showed that under salinity the activity of the TCA cycle increased. There was also an increase in betaine in both genders, which may be explainable by its osmo-compatible function under salinity. The concentration of ten metabolites changed in both genders, while 'Female-only-response' to salinity was detected for five metabolites. In conclusion, dimorphic responses of M. annua plant genders to stress may be attributed to female plants' capacity to survive and complete the reproductive life cycle.

18.
J Virol Methods ; 107(2): 245-55, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12505640

ABSTRACT

Hepatitis C virus (HCV) infection is a major worldwide health problem, causing chronic hepatitis, liver cirrhosis and primary liver cancer (Hepatocellular carcinoma). HCV encodes a precursor polyprotein that is enzymatically cleaved to release the individual viral proteins. The viral non-structural proteins are cleaved by the HCV NS3 serine protease. NS3 is regarded currently as a potential target for anti-viral drugs thus specific inhibitors of its enzymatic activity should be of importance. A prime requisite for detailed biochemical studies of the protease and its potential inhibitors is the availability of a rapid reliable in vitro assay of enzyme activity. A novel assay for measurement of HCV NS3 serine protease activity was developed for screening of HCV NS3 serine protease potential inhibitors. Recombinant NS3 serine protease was isolated and purified, and a fluorometric assay for NS3 proteolytic activity was developed. As an NS3 substrate we engineered a recombinant fusion protein where a green fluorescent protein is linked to a cellulose-binding domain via the NS5A/B site that is cleavable by NS3. Cleavage of this substrate by NS3 results in emission of fluorescent light that is easily detected and quantitated by fluorometry. Using our system we identified NS3 serine protease inhibitors from extracts obtained from natural Indian Siddha medicinal plants. Our unique fluorometric assay is very sensitive and has a high throughput capacity making it suitable for screening of potential NS3 serine protease inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/enzymology , Plants, Medicinal/chemistry , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amino Acid Sequence , Antiviral Agents/isolation & purification , Drug Evaluation, Preclinical , Fluorometry , Green Fluorescent Proteins , Hepacivirus/drug effects , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Molecular Sequence Data , Recombinant Fusion Proteins/metabolism , Serine Proteinase Inhibitors/isolation & purification , Substrate Specificity , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/metabolism
19.
Phytochemistry ; 61(2): 123-8, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12169304

ABSTRACT

NAD(P)H quinone reductase [NAD(P)H-QR] present in the latex of Hevea brasiliensis Müll.-Arg. (Euphorbiaceae) was purified to homogeniety from the B-serum fraction obtained by freeze-thawing of the bottom fraction of ultracentrifuged fresh latex. The purification protocol involved acetone fractionation, heat treatment, ion exchange chromatography and affinity chromatography. The M(r) determined by SDS-PAGE for the protein subunit was 21 kDa, and the molecular mass of the native enzyme estimated by gel filtration was 83 kDa, indicating that the native enzyme is a homotetramer. The enzyme showed pH stability over a range of 6 to at least 10 (with an optimum at pH 8) and thermal stability up to 80 degrees C. High NAD(P)H-QR activity (70%) was still retained after 10 h of preincubation at 80 degrees C. A comparable substrate specificity for this enzyme was observed among menadione, p-benzoquinone, juglone, and plumbagin, with only duroquinone generating a lower activity. Positive correlations between latex NAD(P)H-QR activity and rubber yield per tapping [fresh latex (r=0.89, P<0.01), dry rubber (r=0.81, P<0.01)] together with flow time (r=0.85, P<0.01) indicated that enzyme activity could possibly be used as a marker to predict the yield potential of selected clones.


Subject(s)
Hevea/chemistry , Latex/chemistry , NAD(P)H Dehydrogenase (Quinone)/isolation & purification , Chromatography, Gel , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Hydrogen-Ion Concentration , Kinetics , Latex/isolation & purification , Molecular Weight , NAD(P)H Dehydrogenase (Quinone)/chemistry , Rubber/chemistry , Rubber/isolation & purification , Substrate Specificity , Temperature
20.
Phytochemistry ; 60(5): 467-74, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12052512

ABSTRACT

Cobalt complexation was investigated in a suspension cell culture of the cobalt hyperaccumulator Crotalaria cobalticola. C. cobalticola cells were more tolerant towards cobalt ions than the suspension cells of the non-accumulators Rauvolfia serpentina and Silene cucubalus. While the concentration of various compounds increased in cells of C. cobalticola challenged with cobalt ions, phytochelatin biosynthesis was not induced. Instead, the exposure to cobalt ions resulted in the increase of citrate and cysteine in cells. Size exclusion chromatography demonstrated the co-elution of cobalt and cysteine in C. cobalticola cell extracts. A significant increase in cysteine was observed also in cells of R. serpentina and S. cucubalus when they were exposed to cobalt ions. These results suggest that free cysteine is involved in cobalt ion complexation in plant cells.


Subject(s)
Citric Acid/metabolism , Cobalt/pharmacology , Crotalaria/drug effects , Cysteine/metabolism , Rauwolfia/drug effects , Biological Transport/drug effects , Cells, Cultured , Chromatography, High Pressure Liquid , Chromatography, Thin Layer , Cobalt/metabolism , Crotalaria/cytology , Crotalaria/metabolism , Molecular Weight , Rauwolfia/cytology , Rauwolfia/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL