Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Sci Rep ; 8(1): 661, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29330469

ABSTRACT

Mycobacterium tuberculosis (M. tuberculosis) survives and multiplies inside human macrophages by subversion of immune mechanisms. Although these immune evasion strategies are well characterised functionally, the underlying molecular mechanisms are poorly understood. Here we show that during infection of human whole blood with M. tuberculosis, host gene transcriptional suppression, rather than activation, is the predominant response. Spatial, temporal and functional characterisation of repressed genes revealed their involvement in pathogen sensing and phagocytosis, degradation within the phagolysosome and antigen processing and presentation. To identify mechanisms underlying suppression of multiple immune genes we undertook epigenetic analyses. We identified significantly differentially expressed microRNAs with known targets in suppressed genes. In addition, after searching regions upstream of the start of transcription of suppressed genes for common sequence motifs, we discovered novel enriched composite sequence patterns, which corresponded to Alu repeat elements, transposable elements known to have wide ranging influences on gene expression. Our findings suggest that to survive within infected cells, mycobacteria exploit a complex immune "molecular off switch" controlled by both microRNAs and Alu regulatory elements.


Subject(s)
Alu Elements , MicroRNAs/genetics , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Adult , Epigenesis, Genetic , Female , Gene Expression Profiling , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Immunity , Male , Middle Aged , Oligonucleotide Array Sequence Analysis , Tuberculosis/genetics , Tuberculosis/microbiology
2.
PLoS One ; 12(11): e0185973, 2017.
Article in English | MEDLINE | ID: mdl-29140996

ABSTRACT

The WHO estimates around a million children contract tuberculosis (TB) annually with over 80 000 deaths from dissemination of infection outside of the lungs. The insidious onset and association with skin test anergy suggests failure of the immune system to both recognise and respond to infection. To understand the immune mechanisms, we studied genome-wide whole blood RNA expression in children with TB meningitis (TBM). Findings were validated in a second cohort of children with TBM and pulmonary TB (PTB), and functional T-cell responses studied in a third cohort of children with TBM, other extrapulmonary TB (EPTB) and PTB. The predominant RNA transcriptional response in children with TBM was decreased abundance of multiple genes, with 140/204 (68%) of all differentially regulated genes showing reduced abundance compared to healthy controls. Findings were validated in a second cohort with concordance of the direction of differential expression in both TBM (r2 = 0.78 p = 2x10-16) and PTB patients (r2 = 0.71 p = 2x10-16) when compared to a second group of healthy controls. Although the direction of expression of these significant genes was similar in the PTB patients, the magnitude of differential transcript abundance was less in PTB than in TBM. The majority of genes were involved in activation of leucocytes (p = 2.67E-11) and T-cell receptor signalling (p = 6.56E-07). Less abundant gene expression in immune cells was associated with a functional defect in T-cell proliferation that recovered after full TB treatment (p<0.0003). Multiple genes involved in T-cell activation show decreased abundance in children with acute TB, who also have impaired functional T-cell responses. Our data suggest that childhood TB is associated with an acquired immune defect, potentially resulting in failure to contain the pathogen. Elucidation of the mechanism causing the immune paresis may identify new treatment and prevention strategies.


Subject(s)
RNA, Messenger/blood , T-Lymphocytes/metabolism , Tuberculosis/immunology , Adolescent , Case-Control Studies , Child , Child, Preschool , Cohort Studies , Cytokines/genetics , Female , Gene Expression Profiling , Humans , Male , Reverse Transcriptase Polymerase Chain Reaction , Tuberculosis/genetics
3.
Nat Commun ; 7: 11901, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27301419

ABSTRACT

Microbial resistance to chemotherapy has caused countless deaths where malaria is endemic. Chemotherapy may fail either due to pre-existing resistance or evolution of drug-resistant parasites. Here we use a diverse set of antimalarial compounds to investigate the acquisition of drug resistance and the degree of cross-resistance against common resistance alleles. We assess cross-resistance using a set of 15 parasite lines carrying resistance-conferring alleles in pfatp4, cytochrome bc1, pfcarl, pfdhod, pfcrt, pfmdr, pfdhfr, cytoplasmic prolyl t-RNA synthetase or hsp90. Subsequently, we assess whether resistant parasites can be obtained after several rounds of drug selection. Twenty-three of the 48 in vitro selections result in resistant parasites, with time to resistance onset ranging from 15 to 300 days. Our data indicate that pre-existing resistance may not be a major hurdle for novel-target antimalarial candidates, and focusing our attention on fast-killing compounds may result in a slower onset of clinical resistance.


Subject(s)
Drug Resistance , Parasites/physiology , Plasmodium falciparum/physiology , Animals , Antimalarials/pharmacology , Clone Cells , Drug Resistance/drug effects , INDEL Mutation/genetics , Mutation/genetics , Parasites/drug effects , Plasmodium falciparum/drug effects , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL