Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Acta Neuropathol ; 147(1): 45, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38407651

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease caused by repetitive head impacts (RHI) and pathologically defined as neuronal phosphorylated tau aggregates around small blood vessels and concentrated at sulcal depths. Cross-sectional studies suggest that tau inclusions follow a stereotyped pattern that begins in the neocortex in low stage disease, followed by involvement of the medial temporal lobe and subcortical regions with significant neocortical burden in high stage CTE. Here, we define a subset of brain donors with high stage CTE and with a low overall cortical burden of tau inclusions (mean semiquantitative value ≤1) and classify them as cortical-sparing CTE (CSCTE). Of 620 brain donors with pathologically diagnosed CTE, 66 (11%) met criteria for CSCTE. Compared to typical high stage CTE, those with CSCTE had a similar age at death and years of contact sports participation and were less likely to carry apolipoprotein ε4 (p < 0.05). CSCTE had less overall tau pathology severity, but a proportional increase of disease burden in medial temporal lobe and brainstem regions compared to the neocortex (p's < 0.001). CSCTE also had lower prevalence of comorbid neurodegenerative disease. Clinically, CSCTE participants were less likely to have dementia (p =  0.023) and had less severe cognitive difficulties (as reported by informants using the Functional Activities Questionnaire (FAQ); p < 0.001, meta-cognitional index T score; p = 0.002 and Cognitive Difficulties Scale (CDS); p < 0.001,) but had an earlier onset age of behavioral (p = 0.006) and Parkinsonian motor (p = 0.013) symptoms when compared to typical high stage CTE. Other comorbid tauopathies likely contributed in part to these differences: when cases with concurrent Alzheimer dementia or frontal temporal lobar degeneration with tau pathology were excluded, differences were largely retained, but only remained significant for FAQ (p = 0.042), meta-cognition index T score (p = 0.014) and age of Parkinsonian motor symptom onset (p = 0.046). Overall, CSCTE appears to be a distinct subtype of high stage CTE with relatively greater involvement of subcortical and brainstem regions and less severe cognitive symptoms.


Subject(s)
Alzheimer Disease , Chronic Traumatic Encephalopathy , Neurodegenerative Diseases , Humans , Cross-Sectional Studies , Brain
2.
Exp Eye Res ; 241: 109818, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38422787

ABSTRACT

Down syndrome (DS) is the most common chromosomal disorder in humans. DS is associated with increased prevalence of several ocular sequelae, including characteristic blue-dot cerulean cataract. DS is accompanied by age-dependent accumulation of Alzheimer's disease (AD) amyloid-ß (Aß) peptides and amyloid pathology in the brain and comorbid early-onset Aß amyloidopathy and colocalizing cataracts in the lens. Quasi-elastic light scattering (QLS) is an established optical technique that noninvasively measures changes in protein size distributions in the human lens in vivo. In this cross-sectional study, lenticular QLS correlation time was decreased in adolescent subjects with DS compared to age-matched control subjects. Clinical QLS was consistent with alterations in relative particle hydrodynamic radius in lenses of adolescents with DS. These correlative results suggest that noninvasive QLS can be used to evaluate molecular changes in the lenses of individuals with DS.


Subject(s)
Alzheimer Disease , Cataract/congenital , Down Syndrome , Lens, Crystalline , Humans , Adolescent , Down Syndrome/complications , Down Syndrome/pathology , Cross-Sectional Studies , Alzheimer Disease/metabolism , Lens, Crystalline/metabolism , Amyloid beta-Peptides/metabolism
3.
Radiology ; 306(1): 244-251, 2023 01.
Article in English | MEDLINE | ID: mdl-36125373

ABSTRACT

Background T1-weighted MRI and quantitative longitudinal relaxation rate (R1) mapping have been used to evaluate gadolinium retention in the brain after gadolinium-based contrast agent (GBCA) administration. Whether MRI measures accurately reflect gadolinium regional distribution and concentration in the brain remains unclear. Purpose To compare gadolinium retention in rat forebrain measured with in vivo quantitative MRI R1 and ex vivo laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) mapping after gadobenate, gadopentetate, gadodiamide, or gadobutrol administration. Materials and Methods Adult female Sprague-Dawley rats were randomly assigned to one of five groups (eight per group) and administered gadobenate, gadopentetate, gadodiamide, gadobutrol (2.4 mmol/kg per week for 5 weeks), or saline (4.8 mL/kg per week for 5 weeks). MRI R1 mapping was performed at baseline and 1 week after the final injection to determine R1 and ΔR1. Postmortem brains from the same rats were analyzed with LA-ICP-MS elemental mapping to determine regional gadolinium concentrations. Student t tests were performed to compare results between GBCA and saline groups. Results Rats that were administered gadobenate showed gadolinium-related MRI ΔR1 in 39.5% of brain volume (ΔR1 = 0.087 second-1 ± 0.051); gadopentetate, 20.6% (ΔR1 = 0.069 second-1 ± 0.018); gadodiamide, 5.4% (ΔR1 = 0.055 second-1 ± 0.019); and gadobutrol, 2.2% (ΔR1 = 0.052 second-1 ± 0.041). Agent-specific gadolinium-related ΔR1 was detected in multiple forebrain regions (neocortex, hippocampus, dentate gyrus, thalamus, and caudate-putamen) in rats treated with gadobenate or gadopentetate, whereas rats treated with gadodiamide showed gadolinium-related ΔR1 in caudate-putamen. By contrast, LA-ICP-MS elemental mapping showed a similar regional distribution pattern of heterogeneous retained gadolinium in the forebrain of rats treated with gadobenate, gadopentetate, or gadodiamide, with the average gadolinium concentration of 0.45 µg · g-1 ± 0.07, 0.50 µg · g-1 ± 0.10, and 0.60 µg · g-1 ± 0.11, respectively. Low levels (0.01 µg · g-1 ± 0.00) of retained gadolinium were detected in the forebrain of gadobutrol-treated rats. Conclusion Differences in in vivo MRI longitudinal relaxation rate versus ex vivo elemental mass spectrometry measures of retained gadolinium in rat forebrains suggest that some forms of retained gadolinium may escape detection with MRI. © RSNA, 2022 Online supplemental material is available for this article.


Subject(s)
Gadolinium , Organometallic Compounds , Rats , Female , Animals , Rats, Sprague-Dawley , Gadolinium DTPA , Contrast Media , Meglumine , Magnetic Resonance Imaging/methods , Brain , Mass Spectrometry
4.
Acta Neuropathol ; 147(1): 5, 2023 12 30.
Article in English | MEDLINE | ID: mdl-38159140

ABSTRACT

Plasma-to-autopsy studies are essential for validation of blood biomarkers and understanding their relation to Alzheimer's disease (AD) pathology. Few such studies have been done on phosphorylated tau (p-tau) and those that exist have made limited or no comparison of the different p-tau variants. This study is the first to use immunoprecipitation mass spectrometry (IP-MS) to compare the accuracy of eight different plasma tau species in predicting autopsy-confirmed AD. The sample included 123 participants (AD = 69, non-AD = 54) from the Boston University Alzheimer's disease Research Center who had an available ante-mortem plasma sample and donated their brain. Plasma samples proximate to death were analyzed by targeted IP-MS for six different tryptic phosphorylated (p-tau-181, 199, 202, 205, 217, 231), and two non-phosphorylated tau (195-205, 212-221) peptides. NIA-Reagan Institute criteria were used for the neuropathological diagnosis of AD. Binary logistic regressions tested the association between each plasma peptide and autopsy-confirmed AD status. Area under the receiver operating curve (AUC) statistics were generated using predicted probabilities from the logistic regression models. Odds Ratio (OR) was used to study associations between the different plasma tau species and CERAD and Braak classifications. All tau species were increased in AD compared to non-AD, but p-tau217, p-tau205 and p-tau231 showed the highest fold-changes. Plasma p-tau217 (AUC = 89.8), p-tau231 (AUC = 83.4), and p-tau205 (AUC = 81.3) all had excellent accuracy in discriminating AD from non-AD brain donors, even among those with CDR < 1). Furthermore, p-tau217, p-tau205 and p-tau231 showed the highest ORs with both CERAD (ORp-tau217 = 15.29, ORp-tau205 = 5.05 and ORp-tau231 = 3.86) and Braak staging (ORp-tau217 = 14.29, ORp-tau205 = 5.27 and ORp-tau231 = 4.02) but presented increased levels at different amyloid and tau stages determined by neuropathological examination. Our findings support plasma p-tau217 as the most promising p-tau species for detecting AD brain pathology. Plasma p-tau231 and p-tau205 may additionally function as markers for different stages of the disease.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , tau Proteins , Autopsy , Biomarkers
5.
Brain ; 145(10): 3546-3557, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35554506

ABSTRACT

Blood-based biomarkers such as tau phosphorylated at threonine 181 (phosphorylated-tau181) represent an accessible, cost-effective and scalable approach for the in vivo detection of Alzheimer's disease pathophysiology. Plasma-pathological correlation studies are needed to validate plasma phosphorylated-tau181 as an accurate and reliable biomarker of Alzheimer's disease neuropathological changes. This plasma-to-autopsy correlation study included participants from the Boston University Alzheimer's Disease Research Center who had a plasma sample analysed for phosphorylated-tau181 between 2008 and 2018 and donated their brain for neuropathological examination. Plasma phosphorelated-tau181 was measured with single molecule array technology. Of 103 participants, 62 (60.2%) had autopsy-confirmed Alzheimer's disease. Average time between blood draw and death was 5.6 years (standard deviation = 3.1 years). Multivariable analyses showed higher plasma phosphorylated-tau181 concentrations were associated with increased odds for having autopsy-confirmed Alzheimer's disease [AUC = 0.82, OR = 1.07, 95% CI = 1.03-1.11, P < 0.01; phosphorylated-tau standardized (z-transformed): OR = 2.98, 95% CI = 1.50-5.93, P < 0.01]. Higher plasma phosphorylated-tau181 levels were associated with increased odds for having a higher Braak stage (OR = 1.06, 95% CI = 1.02-1.09, P < 0.01) and more severe phosphorylated-tau across six cortical and subcortical brain regions (ORs = 1.03-1.06, P < 0.05). The association between plasma phosphorylated-tau181 and Alzheimer's disease was strongest in those who were demented at time of blood draw (OR = 1.25, 95%CI = 1.02-1.53), but an effect existed among the non-demented (OR = 1.05, 95% CI = 1.01-1.10). There was higher discrimination accuracy for Alzheimer's disease when blood draw occurred in years closer to death; however, higher plasma phosphorylated-tau181 levels were associated with Alzheimer's disease even when blood draw occurred >5 years from death. Ante-mortem plasma phosphorylated-tau181 concentrations were associated with Alzheimer's disease neuropathology and accurately differentiated brain donors with and without autopsy-confirmed Alzheimer's disease. These findings support plasma phosphorylated-tau181 as a scalable biomarker for the detection of Alzheimer's disease.


Subject(s)
Alzheimer Disease , Nervous System Diseases , Humans , Alzheimer Disease/pathology , tau Proteins , Amyloid beta-Peptides , Autopsy , Biomarkers , Threonine
6.
Exp Eye Res ; 221: 108974, 2022 08.
Article in English | MEDLINE | ID: mdl-35202705

ABSTRACT

Neuropathological hallmarks of Alzheimer's disease (AD) include pathogenic accumulation of amyloid-ß (Aß) peptides and age-dependent formation of amyloid plaques in the brain. AD-associated Aß neuropathology begins decades before onset of cognitive symptoms and slowly progresses over the course of the disease. We previously reported discovery of Aß deposition, ß-amyloidopathy, and co-localizing supranuclear cataracts (SNC) in lenses from people with AD, but not other neurodegenerative disorders or normal aging. We confirmed AD-associated Aß molecular pathology in the lens by immunohistopathology, amyloid histochemistry, immunoblot analysis, epitope mapping, immunogold electron microscopy, quantitative immunoassays, and tryptic digest mass spectrometry peptide sequencing. Ultrastructural analysis revealed that AD-associated Aß deposits in AD lenses localize as electron-dense microaggregates in the cytoplasm of supranuclear (deep cortex) fiber cells. These Aß microaggregates also contain αB-crystallin and scatter light, thus linking Aß pathology and SNC phenotype expression in the lenses of people with AD. Subsequent research identified Aß lens pathology as the molecular origin of the distinctive cataracts associated with Down syndrome (DS, trisomy 21), a chromosomal disorder invariantly associated with early-onset Aß accumulation and Aß amyloidopathy in the brain. Investigation of 1249 participants in the Framingham Eye Study found that AD-associated quantitative traits in brain and lens are co-heritable. Moreover, AD-associated lens traits preceded MRI brain traits and cognitive deficits by a decade or more and predicted future AD. A genome-wide association study of bivariate outcomes in the same subjects identified a new AD risk factor locus in the CTNND2 gene encoding δ-catenin, a protein that modulates Aß production in brain and lens. Here we report identification of AD-related human Aß (hAß) lens pathology and age-dependent SNC phenotype expression in the Tg2576 transgenic mouse model of AD. Tg2576 mice express Swedish mutant human amyloid precursor protein (APP-Swe), accumulate hAß peptides and amyloid pathology in the brain, and exhibit cognitive deficits that slowly progress with increasing age. We found that Tg2576 trangenic (Tg+) mice, but not non-transgenic (Tg-) control mice, also express human APP, accumulate hAß peptides, and develop hAß molecular and ultrastructural pathologies in the lens. Tg2576 Tg+ mice exhibit age-dependent Aß supranuclear lens opacification that recapitulates lens pathology and SNC phenotype expression in human AD. In addition, we detected hAß in conditioned medium from lens explant cultures prepared from Tg+ mice, but not Tg- control mice, a finding consistent with constitutive hAß generation in the lens. In vitro studies showed that hAß promoted mouse lens protein aggregation detected by quasi-elastic light scattering (QLS) spectroscopy. These results support mechanistic (genotype-phenotype) linkage between Aß pathology and AD-related phenotypes in lens and brain. Collectively, our findings identify Aß pathology as the shared molecular etiology of two age-dependent AD-related cataracts associated with two human diseases (AD, DS) and homologous murine cataracts in the Tg2576 transgenic mouse model of AD. These results represent the first evidence of AD-related Aß pathology outside the brain and point to lens Aß as an optically-accessible AD biomarker for early detection and longitudinal monitoring of this devastating neurodegenerative disease.


Subject(s)
Alzheimer Disease , Cataract , Neurodegenerative Diseases , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/pathology , Cataract/pathology , Disease Models, Animal , Genome-Wide Association Study , Humans , Mice , Mice, Transgenic , Neurodegenerative Diseases/pathology
7.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Article in English | MEDLINE | ID: mdl-36195745

ABSTRACT

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Subject(s)
Acute Lung Injury , Electronic Nicotine Delivery Systems , Vaping , Animals , Mice , Acetaldehyde , Acute Lung Injury/chemically induced , Aldehydes/toxicity , Formaldehyde/toxicity , Glycerol , Interleukin-6 , Propylene Glycol/toxicity , Respiratory Aerosols and Droplets , Tumor Necrosis Factor-alpha
8.
Alzheimers Dement ; 18(8): 1523-1536, 2022 08.
Article in English | MEDLINE | ID: mdl-34854549

ABSTRACT

INTRODUCTION: We examined the ability of plasma hyperphosphorylated tau (p-tau)181 to detect cognitive impairment due to Alzheimer's disease (AD) independently and in combination with plasma total tau (t-tau) and neurofilament light (NfL). METHODS: Plasma samples were analyzed using the Simoa platform for 235 participants with normal cognition (NC), 181 with mild cognitive impairment due to AD (MCI), and 153 with AD dementia. Statistical approaches included multinomial regression and Gaussian graphical models (GGMs) to assess a network of plasma biomarkers, neuropsychological tests, and demographic variables. RESULTS: Plasma p-tau181 discriminated AD dementia from NC, but not MCI, and correlated with dementia severity and worse neuropsychological test performance. Plasma NfL similarly discriminated diagnostic groups. Unlike plasma NfL or t-tau, p-tau181 had a direct association with cognitive diagnosis in a bootstrapped GGM. DISCUSSION: These results support plasma p-tau181 for the detection of AD dementia and the use of blood-based biomarkers for optimal disease detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/blood , Biomarkers , Cognitive Dysfunction/diagnosis , Humans , Intermediate Filaments , tau Proteins/blood
9.
Ann Neurol ; 87(1): 116-131, 2020 01.
Article in English | MEDLINE | ID: mdl-31589352

ABSTRACT

OBJECTIVE: Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to contact and collision sports, including American football. We hypothesized a dose-response relationship between duration of football played and CTE risk and severity. METHODS: In a convenience sample of 266 deceased American football players from the Veterans Affairs-Boston University-Concussion Legacy Foundation and Framingham Heart Study Brain Banks, we estimated the association of years of football played with CTE pathological status and severity. We evaluated the ability of years played to classify CTE status using receiver operating characteristic curve analysis. Simulation analyses quantified conditions that might lead to selection bias. RESULTS: In total, 223 of 266 participants met neuropathological diagnostic criteria for CTE. More years of football played were associated with having CTE (odds ratio [OR] = 1.30 per year played, 95% confidence interval [CI] = 1.19-1.41; p = 3.8 × 10-9 ) and with CTE severity (severe vs mild; OR = 1.14 per year played, 95% CI = 1.07-1.22; p = 3.1 × 10-4 ). Participants with CTE were 1/10th as likely to have played <4.5 years (negative likelihood ratio [LR] = 0.102, 95% CI = 0.100-0.105) and were 10 times as likely to have played >14.5 years (positive LR = 10.2, 95% CI = 9.8-10.7) compared with participants without CTE. Sensitivity and specificity were maximized at 11 years played. Simulation demonstrated that years played remained adversely associated with CTE status when years played and CTE status were both related to brain bank selection across widely ranging scenarios. INTERPRETATION: The odds of CTE double every 2.6 years of football played. After accounting for brain bank selection, the magnitude of the relationship between years played and CTE status remained consistent. ANN NEUROL 2020;87:116-131.


Subject(s)
Chronic Traumatic Encephalopathy/pathology , Football/statistics & numerical data , Registries/statistics & numerical data , Aged , Brain/pathology , Case-Control Studies , Chronic Traumatic Encephalopathy/diagnosis , Humans , Male , Middle Aged , Severity of Illness Index , Single-Blind Method , Time Factors
10.
Brain ; 143(6): 1826-1842, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32464655

ABSTRACT

Repetitive mild traumatic brain injury in American football players has garnered increasing public attention following reports of chronic traumatic encephalopathy, a progressive tauopathy. While the mechanisms underlying repetitive mild traumatic brain injury-induced neurodegeneration are unknown and antemortem diagnostic tests are not available, neuropathology studies suggest a pathogenic role for microvascular injury, specifically blood-brain barrier dysfunction. Thus, our main objective was to demonstrate the effectiveness of a modified dynamic contrast-enhanced MRI approach we have developed to detect impairments in brain microvascular function. To this end, we scanned 42 adult male amateur American football players and a control group comprising 27 athletes practicing a non-contact sport and 26 non-athletes. MRI scans were also performed in 51 patients with brain pathologies involving the blood-brain barrier, namely malignant brain tumours, ischaemic stroke and haemorrhagic traumatic contusion. Based on data from prolonged scans, we generated maps that visualized the permeability value for each brain voxel. Our permeability maps revealed an increase in slow blood-to-brain transport in a subset of amateur American football players, but not in sex- and age-matched controls. The increase in permeability was region specific (white matter, midbrain peduncles, red nucleus, temporal cortex) and correlated with changes in white matter, which were confirmed by diffusion tensor imaging. Additionally, increased permeability persisted for months, as seen in players who were scanned both on- and off-season. Examination of patients with brain pathologies revealed that slow tracer accumulation characterizes areas surrounding the core of injury, which frequently shows fast blood-to-brain transport. Next, we verified our method in two rodent models: rats and mice subjected to repeated mild closed-head impact injury, and rats with vascular injury inflicted by photothrombosis. In both models, slow blood-to-brain transport was observed, which correlated with neuropathological changes. Lastly, computational simulations and direct imaging of the transport of Evans blue-albumin complex in brains of rats subjected to recurrent seizures or focal cerebrovascular injury suggest that increased cellular transport underlies the observed slow blood-to-brain transport. Taken together, our findings suggest dynamic contrast-enhanced-MRI can be used to diagnose specific microvascular pathology after traumatic brain injury and other brain pathologies.


Subject(s)
Brain Concussion/diagnostic imaging , Brain Concussion/pathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Animals , Athletes , Blood-Brain Barrier/metabolism , Brain/pathology , Brain Ischemia/pathology , Chronic Traumatic Encephalopathy/pathology , Diffusion Tensor Imaging , Football/injuries , Humans , Male , Microvessels/diagnostic imaging , Rats , Rats, Sprague-Dawley , Stroke/pathology , Tauopathies/pathology , United States , White Matter/pathology , tau Proteins/metabolism
11.
Nature ; 523(7561): 431-436, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26176913

ABSTRACT

Traumatic brain injury (TBI), characterized by acute neurological dysfunction, is one of the best known environmental risk factors for chronic traumatic encephalopathy and Alzheimer's disease, the defining pathologic features of which include tauopathy made of phosphorylated tau protein (P-tau). However, tauopathy has not been detected in the early stages after TBI, and how TBI leads to tauopathy is unknown. Here we find robust cis P-tau pathology after TBI in humans and mice. After TBI in mice and stress in vitro, neurons acutely produce cis P-tau, which disrupts axonal microtubule networks and mitochondrial transport, spreads to other neurons, and leads to apoptosis. This process, which we term 'cistauosis', appears long before other tauopathy. Treating TBI mice with cis antibody blocks cistauosis, prevents tauopathy development and spread, and restores many TBI-related structural and functional sequelae. Thus, cis P-tau is a major early driver of disease after TBI and leads to tauopathy in chronic traumatic encephalopathy and Alzheimer's disease. The cis antibody may be further developed to detect and treat TBI, and prevent progressive neurodegeneration after injury.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Brain Injuries/pathology , Brain Injuries/prevention & control , Tauopathies/prevention & control , tau Proteins/antagonists & inhibitors , tau Proteins/chemistry , Alzheimer Disease/complications , Alzheimer Disease/prevention & control , Animals , Antibodies, Monoclonal/therapeutic use , Antibody Affinity , Axons/metabolism , Axons/pathology , Brain/metabolism , Brain/pathology , Brain Injuries/complications , Brain Injuries/metabolism , Disease Models, Animal , Epitopes/chemistry , Epitopes/immunology , Female , Humans , Male , Mice , Phosphoproteins/antagonists & inhibitors , Phosphoproteins/biosynthesis , Phosphoproteins/immunology , Phosphoproteins/toxicity , Stress, Physiological , Tauopathies/complications , Tauopathies/metabolism , Tauopathies/pathology , tau Proteins/biosynthesis , tau Proteins/immunology , tau Proteins/toxicity
12.
Alzheimers Dement ; 17(10): 1709-1724, 2021 10.
Article in English | MEDLINE | ID: mdl-33826224

ABSTRACT

INTRODUCTION: Validity of the 2014 traumatic encephalopathy syndrome (TES) criteria, proposed to diagnose chronic traumatic encephalopathy (CTE) in life, has not been assessed. METHODS: A total of 336 consecutive brain donors exposed to repetitive head impacts from contact sports, military service, and/or physical violence were included. Blinded to clinical information, neuropathologists applied National Institute on Neurological Disorders and Stroke/National Institute of Biomedical Imaging and Bioengineering CTE criteria. Blinded to neuropathological information, clinicians interviewed informants and reviewed medical records. An expert panel adjudicated TES diagnoses. RESULTS: A total of 309 donors were diagnosed with TES; 244 donors had CTE pathology. TES criteria demonstrated sensitivity and specificity of 0.97 and 0.21, respectively. Cognitive (odds ratio [OR] = 3.6; 95% confidence interval [CI]: 1.2-5.1), but not mood/behavior or motor symptoms, were significantly associated with CTE pathology. Having Alzheimer's disease (AD) pathology was significantly associated with reduced TES accuracy (OR = 0.27; 95% CI: 0.12-0.59). DISCUSSION: TES criteria provided good evidence to rule out, but limited evidence to rule in, CTE pathology. Requiring cognitive symptoms in revised criteria and using AD biomarkers may improve CTE pathology prediction.


Subject(s)
Autopsy , Brain Injuries, Traumatic/pathology , Brain/pathology , Chronic Traumatic Encephalopathy , Alzheimer Disease/pathology , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/pathology , Female , Humans , Male , Middle Aged
13.
Radiology ; 294(2): 377-385, 2020 02.
Article in English | MEDLINE | ID: mdl-31769744

ABSTRACT

Background Gadolinium retention after repeated gadolinium-based contrast agent (GBCA) exposure has been reported in subcortical gray matter. However, gadolinium retention in the cerebral cortex has not been systematically investigated. Purpose To determine whether and where gadolinium is retained in rat and human cerebral cortex. Materials and Methods The cerebral cortex in Sprague-Dawley rats treated with gadopentetate dimeglumine (three doses over 4 weeks; cumulative gadolinium dose, 7.2 mmol per kilogram of body weight; n = 6) or saline (n = 6) was examined with antemortem MRI. Two human donors with repeated GBCA exposure (three and 15 doses; 1 and 5 months after exposure), including gadopentetate dimeglumine, and two GBCA-naive donors were also evaluated. Elemental brain maps (gadolinium, phosphorus, zinc, copper, iron) for rat and human brains were constructed by using laser ablation inductively coupled plasma mass spectrometry. Results Gadopentetate dimeglumine-treated rats showed region-, subregion-, and layer-specific gadolinium retention in the neocortex (anterior cingulate cortex: mean gadolinium concentration, 0.28 µg ∙ g-1 ± 0.04 [standard error of the mean]) that was comparable (P > .05) to retention in the allocortex (mean gadolinium concentration, 0.33 µg ∙ g-1 ± 0.04 in piriform cortex, 0.24 µg ∙ g-1 ± 0.04 in dentate gyrus, 0.17 µg ∙ g-1 ± 0.04 in hippocampus) and subcortical structures (0.47 µg ∙ g-1 ± 0.10 in facial nucleus, 0.39 µg ∙ g-1 ± 0.10 in choroid plexus, 0.29 µg ∙ g-1 ± 0.05 in caudate-putamen, 0.26 µg ∙ g-1 ± 0.05 in reticular nucleus of the thalamus, 0.24 µg ∙ g-1 ± 0.04 in vestibular nucleus) and significantly greater than that in the cerebellum (0.17 µg ∙ g-1 ± 0.03, P = .01) and white matter tracts (anterior commissure: 0.05 µg ∙ g-1 ± 0.01, P = .002; corpus callosum: 0.05 µg ∙ g-1 ± 0.02, P = .001; cranial nerve: 0.02 µg ∙ g-1 ± 0.01, P = .004). Retained gadolinium colocalized with parenchymal iron. T1-weighted MRI signal intensification was not observed. Gadolinium retention was detected in the cerebral cortex, pia mater, and pia-ensheathed leptomeningeal vessels in two GBCA-exposed human brains but not in two GBCA-naive human brains. Conclusion Repeated gadopentetate dimeglumine exposure is associated with gadolinium retention in specific regions, subregions, and layers of cerebral cortex that are critical for higher cognition, affect, and behavior regulation, sensorimotor coordination, and executive function. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Kanal in this issue.


Subject(s)
Cerebral Cortex/metabolism , Contrast Media/pharmacokinetics , Gadolinium DTPA/pharmacokinetics , Administration, Intravenous , Adult , Animals , Contrast Media/administration & dosage , Female , Gadolinium DTPA/administration & dosage , Humans , Male , Mass Spectrometry/methods , Middle Aged , Models, Animal , Rats , Rats, Sprague-Dawley
14.
Acta Neuropathol ; 140(4): 495-512, 2020 10.
Article in English | MEDLINE | ID: mdl-32778942

ABSTRACT

Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive head impacts (RHI) that has been neuropathologically diagnosed in American football players and other contact sport athletes. In 2013, McKee and colleagues proposed a staging scheme for characterizing the severity of the hyperphosphorylated tau (p-tau) pathology, the McKee CTE staging scheme. The staging scheme defined four pathological stages of CTE, stages I(mild)-IV(severe), based on the density and regional deposition of p-tau. The objective of this study was to test the utility of the McKee CTE staging scheme, and provide a detailed examination of the regional distribution of p-tau in CTE. We examined the relationship between the McKee CTE staging scheme and semi-quantitative and quantitative assessments of regional p-tau pathology, age at death, dementia, and years of American football play among 366 male brain donors neuropathologically diagnosed with CTE (mean age 61.86, SD 18.90). Spearman's rho correlations showed that higher CTE stage was associated with higher scores on all semi-quantitative and quantitative assessments of p-tau severity and density (p's < 0.001). The severity and distribution of CTE p-tau followed an age-dependent progression: older age was associated with increased odds for having a higher CTE stage (p < 0.001). CTE stage was independently associated with increased odds for dementia (p < 0.001). K-medoids cluster analysis of the semi-quantitative scales of p-tau across 14 regions identified 5 clusters of p-tau that conformed to increasing CTE stage (stage IV had 2 slightly different clusters), age at death, dementia, and years of American football play. There was a predilection for p-tau pathology in five regions: dorsolateral frontal cortex (DLF), superior temporal cortex, entorhinal cortex, amygdala, and locus coeruleus (LC), with CTE in the youngest brain donors and lowest CTE stage restricted to DLF and LC. These findings support the usefulness of the McKee CTE staging scheme and demonstrate the regional distribution of p-tau in CTE.


Subject(s)
Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Tauopathies/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Brain/metabolism , Football/injuries , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index , Tauopathies/etiology , Young Adult , tau Proteins/metabolism
15.
Acta Neuropathol ; 140(6): 851-862, 2020 12.
Article in English | MEDLINE | ID: mdl-32939646

ABSTRACT

Probable rapid eye movement (REM) sleep behavior disorder (pRBD) is a synucleinopathy-associated parasomnia in which loss of REM sleep muscle atonia results in motor behavior during REM sleep, including dream enactment. Traumatic brain injury is independently associated with increased risk of pRBD and Lewy body disease, and both pRBD and Lewy body disease are often observed in chronic traumatic encephalopathy (CTE). However, the frequency and pathological substrate of pRBD in CTE have not been formally studied and remain unknown. Of the total sample of 247 men, age at death of 63.1 ± 18.8 years (mean ± SD), 80 [32%] were determined by informant report to have symptoms of pRBD. These participants had played more years of contact sports (18.3 ± 11.4) than those without pRBD (15.1 ± 6.5; P = 0.02) and had an increased frequency of Lewy body disease (26/80 [33%] vs 28/167 [17%], P = 0.005). Of the 80 participants with pRBD, 54 [68%] did not have Lewy body disease; these participants were more likely to have neurofibrillary tangles and pretangles in the dorsal and median raphe (41 of 49 [84%] non-LBD participants with pRBD symptoms vs 90 of 136 [66%] non-LBD participants without pRBD symptoms, P = 0.02), brainstem nuclei with sleep regulatory function. Binary logistic regression modeling in the total study sample showed that pRBD in CTE was associated with dorsal and median raphe nuclei neurofibrillary tangles (OR = 3.96, 95% CI [1.43, 10.96], P = 0.008), Lewy body pathology (OR = 2.36, 95% CI [1.18, 4.72], P = 0.02), and years of contact sports participation (OR = 1.04, 95% CI [1.00, 1.08], P = 0.04). Overall, pRBD in CTE is associated with increased years of contact sports participation and may be attributable to Lewy body and brainstem tau pathologies.


Subject(s)
Chronic Traumatic Encephalopathy/pathology , Lewy Body Disease/pathology , Neurofibrillary Tangles/pathology , REM Sleep Behavior Disorder/etiology , REM Sleep Behavior Disorder/pathology , Adult , Aged , Aged, 80 and over , Chronic Traumatic Encephalopathy/complications , Humans , Lewy Bodies/pathology , Male , Middle Aged , Parkinson Disease/complications , REM Sleep Behavior Disorder/diagnosis
16.
Semin Neurol ; 40(4): 430-438, 2020 08.
Article in English | MEDLINE | ID: mdl-32674181

ABSTRACT

Exposure to repetitive neurotrauma increases lifetime risk for developing progressive cognitive deficits, neurobehavioral abnormalities, and chronic traumatic encephalopathy (CTE). CTE is a tau protein neurodegenerative disease first identified in boxers and recently described in athletes participating in other contact sports (notably American football, ice hockey, rugby, and wrestling) and in military veterans with blast exposure. Currently, CTE can only be diagnosed by neuropathological examination of the brain after death. The defining diagnostic lesion of CTE consists of patchy perivascular accumulations of hyperphosphorylated tau protein that localize in the sulcal depths of the cerebral cortex. Neuronal abnormalities, axonopathy, neurovascular dysfunction, and neuroinflammation are triggered by repetitive head impacts (RHIs) and likely act as catalysts for CTE pathogenesis and progression. However, the specific mechanisms that link RHI to CTE are unknown. This review will explore two important areas of CTE pathobiology. First, we will review what is known about the biomechanical properties of RHI that initiate CTE-related pathologies. Second, we will provide an overview of key features of CTE neuropathology and how these contribute to abnormal tau hyperphosphorylation, accumulation, and spread.


Subject(s)
Chronic Traumatic Encephalopathy/etiology , Chronic Traumatic Encephalopathy/pathology , Tauopathies/etiology , Tauopathies/pathology , tau Proteins/metabolism , Chronic Traumatic Encephalopathy/metabolism , Humans , Tauopathies/metabolism
17.
Ann Neurol ; 83(5): 886-901, 2018 05.
Article in English | MEDLINE | ID: mdl-29710395

ABSTRACT

OBJECTIVE: To examine the effect of age of first exposure to tackle football on chronic traumatic encephalopathy (CTE) pathological severity and age of neurobehavioral symptom onset in tackle football players with neuropathologically confirmed CTE. METHODS: The sample included 246 tackle football players who donated their brains for neuropathological examination. Two hundred eleven were diagnosed with CTE (126 of 211 were without comorbid neurodegenerative diseases), and 35 were without CTE. Informant interviews ascertained age of first exposure and age of cognitive and behavioral/mood symptom onset. RESULTS: Analyses accounted for decade and duration of play. Age of exposure was not associated with CTE pathological severity, or Alzheimer's disease or Lewy body pathology. In the 211 participants with CTE, every 1 year younger participants began to play tackle football predicted earlier reported cognitive symptom onset by 2.44 years (p < 0.0001) and behavioral/mood symptoms by 2.50 years (p < 0.0001). Age of exposure before 12 predicted earlier cognitive (p < 0.0001) and behavioral/mood (p < 0.0001) symptom onset by 13.39 and 13.28 years, respectively. In participants with dementia, younger age of exposure corresponded to earlier functional impairment onset. Similar effects were observed in the 126 CTE-only participants. Effect sizes were comparable in participants without CTE. INTERPRETATION: In this sample of deceased tackle football players, younger age of exposure to tackle football was not associated with CTE pathological severity, but predicted earlier neurobehavioral symptom onset. Youth exposure to tackle football may reduce resiliency to late-life neuropathology. These findings may not generalize to the broader tackle football population, and informant-report may have affected the accuracy of the estimated effects. Ann Neurol 2018;83:886-901.


Subject(s)
Age Factors , Alzheimer Disease/etiology , Brain/pathology , Chronic Traumatic Encephalopathy/pathology , Football , Adolescent , Alzheimer Disease/pathology , Brain/physiopathology , Chronic Traumatic Encephalopathy/physiopathology , Humans , Male , tau Proteins/metabolism
18.
Acta Neuropathol ; 138(3): 401-413, 2019 09.
Article in English | MEDLINE | ID: mdl-31183671

ABSTRACT

Cerebral amyloid angiopathy (CAA) consists of beta-amyloid deposition in the walls of the cerebrovasculature and is commonly associated with Alzheimer's disease (AD). However, the association of CAA with repetitive head impacts (RHI) and with chronic traumatic encephalopathy (CTE) is unknown. We evaluated the relationship between RHI from contact sport participation, CTE, and CAA within a group of deceased contact sport athletes (n = 357), a community-based cohort (n = 209), and an AD cohort from Boston University AD Center (n = 241). Unsupervised hierarchal cluster analysis demonstrated a unique cluster (n = 11) with increased CAA in the leptomeningeal vessels compared to the intracortical vessels (p < 0.001) comprised of participants with significantly greater frequencies of CTE (7/11) and history of RHI. Overall, participants with CTE (n = 251) had more prevalent (p < 0.001) and severe (p = 0.010) CAA within the frontal leptomeningeal vessels compared to intracortical vessels. Compared to those with AD, participants with CTE had more severe CAA in frontal than parietal lobes (p < 0.001) and more severe CAA in leptomeningeal than intracortical vessels (p = 0.002). The overall frequency of CAA in participants with CTE was low, and there was no significant association between contact sport participation and the presence of CAA. However, in those with CAA, a history of contact sports was associated with increased CAA severity in the frontal leptomeningeal vessels (OR = 4.01, 95% CI 2.52-6.38, p < 0.001) adjusting for AD, APOE ε4 status, and age. Participants with CAA had increased levels of sulcal tau pathology and decreased levels of the synaptic marker PSD-95 (p's < 0.05), and CAA was a predictor of dementia (OR = 1.75, 95% CI 1.02-2.99, p = 0.043) adjusting for age, sex, and comorbid pathology. Overall, contact sport participation and CTE were associated with more severe frontal and leptomeningeal CAA, and CAA was independently associated with worse pathological and clinical outcomes.


Subject(s)
Athletic Injuries/pathology , Cerebral Amyloid Angiopathy/pathology , Chronic Traumatic Encephalopathy/pathology , Aged , Aged, 80 and over , Athletes , Athletic Injuries/complications , Brain/pathology , Cerebral Amyloid Angiopathy/complications , Chronic Traumatic Encephalopathy/complications , Female , Humans , Male , Sports
19.
Brain ; 141(2): 422-458, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29360998

ABSTRACT

The mechanisms underpinning concussion, traumatic brain injury, and chronic traumatic encephalopathy, and the relationships between these disorders, are poorly understood. We examined post-mortem brains from teenage athletes in the acute-subacute period after mild closed-head impact injury and found astrocytosis, myelinated axonopathy, microvascular injury, perivascular neuroinflammation, and phosphorylated tau protein pathology. To investigate causal mechanisms, we developed a mouse model of lateral closed-head impact injury that uses momentum transfer to induce traumatic head acceleration. Unanaesthetized mice subjected to unilateral impact exhibited abrupt onset, transient course, and rapid resolution of a concussion-like syndrome characterized by altered arousal, contralateral hemiparesis, truncal ataxia, locomotor and balance impairments, and neurobehavioural deficits. Experimental impact injury was associated with axonopathy, blood-brain barrier disruption, astrocytosis, microgliosis (with activation of triggering receptor expressed on myeloid cells, TREM2), monocyte infiltration, and phosphorylated tauopathy in cerebral cortex ipsilateral and subjacent to impact. Phosphorylated tauopathy was detected in ipsilateral axons by 24 h, bilateral axons and soma by 2 weeks, and distant cortex bilaterally at 5.5 months post-injury. Impact pathologies co-localized with serum albumin extravasation in the brain that was diagnostically detectable in living mice by dynamic contrast-enhanced MRI. These pathologies were also accompanied by early, persistent, and bilateral impairment in axonal conduction velocity in the hippocampus and defective long-term potentiation of synaptic neurotransmission in the medial prefrontal cortex, brain regions distant from acute brain injury. Surprisingly, acute neurobehavioural deficits at the time of injury did not correlate with blood-brain barrier disruption, microgliosis, neuroinflammation, phosphorylated tauopathy, or electrophysiological dysfunction. Furthermore, concussion-like deficits were observed after impact injury, but not after blast exposure under experimental conditions matched for head kinematics. Computational modelling showed that impact injury generated focal point loading on the head and seven-fold greater peak shear stress in the brain compared to blast exposure. Moreover, intracerebral shear stress peaked before onset of gross head motion. By comparison, blast induced distributed force loading on the head and diffuse, lower magnitude shear stress in the brain. We conclude that force loading mechanics at the time of injury shape acute neurobehavioural responses, structural brain damage, and neuropathological sequelae triggered by neurotrauma. These results indicate that closed-head impact injuries, independent of concussive signs, can induce traumatic brain injury as well as early pathologies and functional sequelae associated with chronic traumatic encephalopathy. These results also shed light on the origins of concussion and relationship to traumatic brain injury and its aftermath.awx350media15713427811001.


Subject(s)
Athletic Injuries/complications , Brain Concussion/etiology , Craniocerebral Trauma/complications , Craniocerebral Trauma/etiology , Tauopathies/etiology , Vascular System Injuries/etiology , Action Potentials/physiology , Adolescent , Animals , Athletes , Brain/pathology , Calcium-Binding Proteins , Cohort Studies , Computer Simulation , Craniocerebral Trauma/diagnostic imaging , DNA-Binding Proteins/metabolism , Disease Models, Animal , Female , Gene Expression Regulation/physiology , Hippocampus/physiopathology , Humans , Male , Mice , Mice, Inbred C57BL , Microfilament Proteins , Models, Neurological , Prefrontal Cortex/physiopathology , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Interleukin-8A/genetics , Receptors, Interleukin-8A/metabolism , Young Adult
20.
Article in English | MEDLINE | ID: mdl-27539377

ABSTRACT

This study conducted a preliminary examination on cognitive reserve (CR) as a modifier of symptom expression in subjects with autopsy-confirmed chronic traumatic encephalopathy (CTE). The sample included 25 former professional football players neuropathologically diagnosed with CTE stage III or IV. Next of kin interviews ascertained age at cognitive and behavioral/mood symptom onset and demographic/athletic characteristics. Years of education and occupational attainment defined CR. High occupational achievement predicted later age at cognitive (p=0.02) and behavioral/mood (p=0.02) onset. Education was not an individual predictor. These preliminary findings suggest that CR may forestall the clinical manifestation of CTE.


Subject(s)
Chronic Traumatic Encephalopathy/psychology , Cognitive Reserve , Age of Onset , Aged , Athletes , Athletic Injuries/complications , Athletic Injuries/diagnosis , Athletic Injuries/psychology , Behavioral Symptoms , Chronic Traumatic Encephalopathy/diagnosis , Chronic Traumatic Encephalopathy/etiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognitive Dysfunction/psychology , Educational Status , Family , Football , Humans , Interviews as Topic , Linear Models , Male , Occupations , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL