Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Cereb Blood Flow Metab ; 43(3): 369-378, 2023 03.
Article in English | MEDLINE | ID: mdl-36271598

ABSTRACT

Alzheimer's disease is characterized by regional reductions in cerebral blood flow (CBF). Although the gold standard for measuring CBF is [15O]H2O PET, proxies of relative CBF, derived from the early distribution phase of amyloid and tau tracers, have gained attention. The present study assessed precision of [15O]H2O derived relative and absolute CBF, and compared precision of these measures with that of (relative) CBF proxies. Dynamic [15O]H2O, [18F]florbetapir and [18F]flortaucipir PET test-retest (TrT) datasets with eleven, nine and fourteen subjects, respectively, were included. Analyses were performed using an arterial input model and/or a simplified reference tissue model, depending on the data available. Relative CBF values (i.e. K1/K1' and/or R1) were obtained using cerebellar cortex as reference tissue and TrT repeatability (i.e. precision) was calculated and compared between tracers, parameters and clinical groups. Relative CBF had significantly better TrT repeatability than absolute CBF derived from [15O]H2O (r = -0.53), while best TrT repeatability was observed for [18F]florbetapir and [18F]flortaucipir R1 (r = -0.23, r = -0.33). Furthermore, only R1 showed, better TrT repeatability for cognitively normal individuals. High precision of CBF proxies could be due to a compensatory effect of the extraction fraction, although changes in extraction fraction could also bias these proxies, but not the gold standard.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Positron-Emission Tomography , Aniline Compounds , Cerebrovascular Circulation/physiology , Brain/metabolism
2.
J Cereb Blood Flow Metab ; 41(3): 569-578, 2021 03.
Article in English | MEDLINE | ID: mdl-32321347

ABSTRACT

Accumulation of amyloid beta (Aß) is one of the pathological hallmarks of Alzheimer's disease (AD), which can be visualized using [18F]florbetapir positron emission tomography (PET). The aim of this study was to evaluate various parametric methods and to assess their test-retest (TRT) reliability. Two 90 min dynamic [18F]florbetapir PET scans, including arterial sampling, were acquired (n = 8 AD patient, n = 8 controls). The following parametric methods were used; (reference:cerebellum); Logan and spectral analysis (SA), receptor parametric mapping (RPM), simplified reference tissue model2 (SRTM2), reference Logan (rLogan) and standardized uptake value ratios (SUVr(50-70)). BPND+1, DVR, VT and SUVr were compared with corresponding estimates (VT or DVR) from the plasma input reversible two tissue compartmental (2T4k_VB) model with corresponding TRT values for 90-scan duration. RPM (r2 = 0.92; slope = 0.91), Logan (r2 = 0.95; slope = 0.84) and rLogan (r2 = 0.94; slope = 0.88), and SRTM2 (r2 = 0.91; slope = 0.83), SA (r2 = 0.91; slope = 0.88), SUVr (r2 = 0.84; slope = 1.16) correlated well with their 2T4k_VB counterparts. RPM (controls: 1%, AD: 3%), rLogan (controls: 1%, AD: 3%) and SUVr(50-70) (controls: 3%, AD: 8%) showed an excellent TRT reliability. In conclusion, most parametric methods showed excellent performance for [18F]florbetapir, but RPM and rLogan seem the methods of choice, combining the highest accuracy and best TRT reliability.


Subject(s)
Alzheimer Disease/diagnosis , Aniline Compounds/chemistry , Ethylene Glycols/chemistry , Radiopharmaceuticals/chemistry , Aged , Brain/diagnostic imaging , Case-Control Studies , Female , Fluorine Radioisotopes/chemistry , Humans , Male , Middle Aged , Positron-Emission Tomography
3.
J Cereb Blood Flow Metab ; 41(6): 1338-1350, 2021 06.
Article in English | MEDLINE | ID: mdl-34013797

ABSTRACT

[11C]UCB-J is a novel radioligand that binds to synaptic vesicle glycoprotein 2A (SV2A). The main objective of this study was to determine the 28-day test-retest repeatability (TRT) of quantitative [11C]UCB-J brain positron emission tomography (PET) imaging in Alzheimer's disease (AD) patients and healthy controls (HCs). Nine HCs and eight AD patients underwent two 60 min dynamic [11C]UCB-J PET scans with arterial sampling with an interval of 28 days. The optimal tracer kinetic model was assessed using the Akaike criteria (AIC). Micro-/macro-parameters such as tracer delivery (K1) and volume of distribution (VT) were estimated using the optimal model. Data were also analysed for simplified reference tissue model (SRTM) with centrum semi-ovale (white matter) as reference region. Based on AIC, both 1T2k_VB and 2T4k_VB described the [11C]UCB-J kinetics equally well. Analysis showed that whole-brain grey matter TRT for VT, DVR and SRTM BPND were -2.2% ± 8.5, 0.4% ± 12.0 and -8.0% ± 10.2, averaged over all subjects. [11C]UCB-J kinetics can be well described by a 1T2k_VB model, and a 60 min scan duration was sufficient to obtain reliable estimates for both plasma input and reference tissue models. TRT for VT, DVR and BPND was <15% (1SD) averaged over all subjects and indicates adequate quantitative repeatability of [11C]UCB-J PET.


Subject(s)
Alzheimer Disease/diagnostic imaging , Neuroimaging/methods , Pyridines/pharmacokinetics , Pyrrolidinones/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Female , Humans , Image Interpretation, Computer-Assisted , Kinetics , Male , Membrane Glycoproteins/metabolism , Middle Aged , Nerve Tissue Proteins/metabolism , Positron-Emission Tomography/methods , Reproducibility of Results
4.
J Cereb Blood Flow Metab ; 40(12): 2464-2474, 2020 12.
Article in English | MEDLINE | ID: mdl-31575335

ABSTRACT

The aim of this study was to investigate the test-retest (TRT) repeatability of various parametric quantification methods for [18F]Flortaucipir positron emission tomography (PET). We included eight subjects with dementia or mild cognitive impairment due to Alzheimer's disease and six cognitively normal subjects. All underwent two 130-min dynamic [18F]Flortaucipir PET scans within 3 ± 1 weeks. Data were analyzed using reference region models receptor parametric mapping (RPM), simplified reference tissue method 2 (SRTM2) and reference logan (RLogan), as well as standardized uptake value ratios (SUVr, time intervals 40-60, 80-100 and 110-130 min post-injection) with cerebellar gray matter as reference region. We obtained distribution volume ratio or SUVr, first for all brain regions and then in three tau-specific regions-of-interest (ROIs). TRT repeatability (%) was defined as |retest-test|/(average (test + retest)) × 100. For all methods and across ROIs, TRT repeatability ranged from (median (IQR)) 0.84% (0.68-2.15) to 6.84% (2.99-11.50). TRT repeatability was good for all reference methods used, although semi-quantitative models (i.e. SUVr) performed marginally worse than quantitative models, for instance TRT repeatability of RPM: 1.98% (0.78-3.58) vs. SUVr80-100: 3.05% (1.28-5.52), p < 0.001. Furthermore, for SUVr80-100 and SUVr110-130, with higher average SUVr, more variation was observed. In conclusion, while TRT repeatability was good for all models used, quantitative methods performed slightly better than semi-quantitative methods.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Carbolines/metabolism , Positron-Emission Tomography/methods , Aged , Alzheimer Disease/complications , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/metabolism , Brain/diagnostic imaging , Cognition/physiology , Cognitive Dysfunction/metabolism , Female , Gray Matter/metabolism , Humans , Male , Middle Aged , Neuropsychological Tests/standards , Radiopharmaceuticals/metabolism , Reproducibility of Results , tau Proteins/metabolism
5.
J Cereb Blood Flow Metab ; 40(2): 365-373, 2020 02.
Article in English | MEDLINE | ID: mdl-30569813

ABSTRACT

[18F]Flortaucipir is a PET tau tracer used to visualize tau binding in Alzheimer's disease (AD) in vivo. The present study evaluated the performance of several methods to obtain parametric images of [18F]flortaucipir. One hundred and thirty minutes dynamic PET scans were performed in 10 AD patients and 10 controls. Parametric images were generated using different linearization and basis function approaches. Regional binding potential (BPND) and volume of distribution (VT) values obtained from the parametric images were compared with corresponding values derived using the reversible two-tissue compartment model (2T4k_VB). Performance of SUVr parametric images was assessed by comparing values with distribution volume ratio (DVR) and SRTM-derived BPND estimates obtained using non-linear regression (NLR). Spectral analysis (SA) (r2 = 0.92; slope = 0.99) derived VT correlated well with NLR-derived VT. RPM (r2 = 0.95; slope = 0.98) derived BPND correlated well with NLR-derived DVR. Although SUVr80-100 min correlated well with NLR-derived DVR (r2 = 0.91; slope = 1.09), bias in SUVr appeared to depend on uptake time and underlying level of specific binding. In conclusion, RPM and SA provide parametric images comparable to the NLR estimates. Individual SUVr values are biased compared with DVR and this bias requires further study in a larger dataset in order to understand its consequences.


Subject(s)
Alzheimer Disease , Brain , Carbolines , Positron-Emission Tomography , tau Proteins/metabolism , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Brain/diagnostic imaging , Brain/metabolism , Carbolines/administration & dosage , Carbolines/pharmacokinetics , Female , Humans , Male , Middle Aged
6.
Neuroimage Clin ; 25: 102113, 2020.
Article in English | MEDLINE | ID: mdl-31835238

ABSTRACT

BACKGROUND: Off-target [18F]flortaucipir (tau) PET binding in the choroid plexus causes spill-in into the nearby hippocampus, which may influence the correlation between [18F]flortaucipir binding and measures of cognition. Previously, we showed that partial volume correction (combination of Van Cittert iterative deconvolution and HYPR denoising; PVC HDH) and manually eroding the hippocampus resulted in a significant decrease of the choroid plexus spill-in. In this study, we compared three different approaches for the quantification of hippocampal [18F]flortaucipir signal using a semi-automated technique, and assessed correlations with cognitive performance across methods. METHODS: Dynamic 130 min [18F]flortaucipir PET scans were performed in 109 subjects (45 cognitively normal subjects (CN) and 64 mild cognitive impairment/Alzheimer's disease (AD) dementia patients. We extracted hippocampal binding potential (BPND) using receptor parametric mapping with cerebellar grey matter as reference region. PVC HDH was performed. Based on our previous study in which we manually eroded 40% ± 10% of voxels of the hippocampus, three hippocampal volumes-of-interest (VOIs) were generated: a non-optimized 100% hippocampal VOI [100%], and combining HDH with eroding a percentage of the highest hippocampus BPND voxels (i.e. lowering spill-in) resulting in optimized 50%[50%HDH] and 40%[40%HDH] hippocampal VOIs. Cognitive performance was assessed with the Mini-Mental State Examination (MMSE) and Rey auditory verbal learning delayed recall. We performed receiver operating characteristic analyses to investigate which method could best discriminate MCI/AD from controls. Subsequently, we performed linear regressions to investigate associations between the hippocampal [18F]flortaucipir BPND VOIs and MMSE/delayed recall adjusted for age, sex and education. RESULTS: We found higher hippocampal [18F]flortaucipir BPND in MCI/AD patients (BPND100%=0.27±0.15) compared to CN (BPND100%= 0.07±0.13) and all methods showed comparable discriminative effects (AUC100%=0.85[CI=0.78-0.93]; AUC50%HDH=0.84[CI=0.74-0.92]; AUC40%HDH=0.83[CI=0.74-0.92]). Across groups, higher [18F]flortaucipir BPND was related to lower scores on MMSE (standardized ß100%=-0.38[CI=-0.57-0.20]; ß50%HDH= -0.37[CI=-0.54-0.19]; ß40%HDH=-0.35[CI=-0.53-0.17], all p<0.001) and delayed recall (standardized ß100%=-0.64[CI=-0.79-0.49]; ß50%HDH= -0.61[CI=-0.76-0.46]; ß40%HDH=-0.59[CI=-0.75-0.44]; all p<0.001), with comparable effect sizes for all hippocampal VOIs. CONCLUSIONS: Hippocampal tau load measured with [18F]flortaucipir PET is strongly associated with cognitive function. Both discrimination between diagnostic groups and associations between hippocampal [18F]flortaucipir BPND and memory were comparable for all methods. The non-optimized 100% hippocampal VOI may be sufficient for clinical interpretation. However, proper correction for choroid plexus spillover and may be required in case of smaller effect sizes between subject groups or for longitudinal studies.


Subject(s)
Alzheimer Disease/diagnostic imaging , Carbolines/pharmacokinetics , Choroid Plexus/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Hippocampus/diagnostic imaging , Neuroimaging/standards , Positron-Emission Tomography/standards , tau Proteins/metabolism , Aged , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/physiopathology , Female , Hippocampus/metabolism , Hippocampus/physiopathology , Humans , Male , Memory and Learning Tests , Mental Status and Dementia Tests , Middle Aged , Neuroimaging/methods , Positron-Emission Tomography/methods
7.
J Cereb Blood Flow Metab ; 39(11): 2172-2180, 2019 11.
Article in English | MEDLINE | ID: mdl-29897009

ABSTRACT

Accumulation of amyloid beta can be visualized using [18F]florbetapir positron emission tomography. The aim of this study was to identify the optimal model for quantifying [18F]florbetapir uptake and to assess test-retest reliability of corresponding outcome measures. Eight Alzheimer's disease patients (age: 67 ± 6 years, Mini-Mental State Examination (MMSE): 23 ± 3) and eight controls (age: 63 ± 4 years, MMSE: 30 ± 0) were included. Ninety-minute dynamic positron emission tomography scans, together with arterial blood sampling, were acquired immediately following a bolus injection of 294 ± 32 MBq [18F]florbetapir. Several plasma input models and the simplified reference tissue model (SRTM) were evaluated. The Akaike information criterion was used to identify the preferred kinetic model. Compared to controls, Alzheimer's disease patients had lower MMSE scores and evidence for cortical Aß pathology. A reversible two-tissue compartment model with fitted blood volume fraction (2T4k_VB) was the preferred model for describing [18F]florbetapir kinetics. SRTM-derived non-displaceable binding potential (BPND) correlated well (r2 = 0.83, slope = 0.86) with plasma input-derived distribution volume ratio. Test-retest reliability for plasma input-derived distribution volume ratio, SRTM-derived BPND and SUVr(50-70) were r = 0.88, r = 0.91 and r = 0.86, respectively. In vivo kinetics of [18F]florbetapir could best be described by a reversible two-tissue compartmental model and [18F]florbetapir BPND can be reliably estimated using an SRTM.


Subject(s)
Alzheimer Disease/diagnostic imaging , Aniline Compounds/analysis , Ethylene Glycols/analysis , Positron-Emission Tomography/methods , Aged , Amyloid beta-Peptides/analysis , Case-Control Studies , Female , Fluorine Radioisotopes , Humans , Kinetics , Male , Middle Aged , Models, Theoretical , Radiopharmaceuticals , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL