Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Nature ; 571(7763): 72-78, 2019 07.
Article in English | MEDLINE | ID: mdl-31217586

ABSTRACT

New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target 474 essential Mtb genes and screened pools of 100-150 strains against activity-enriched and unbiased compound libraries, probing more than 8.5 million chemical-genetic interactions. Primary screens identified over tenfold more hits than screening wild-type Mtb alone, with chemical-genetic interactions providing immediate, direct target insights. We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded conventional drug discovery.


Subject(s)
Antitubercular Agents/classification , Antitubercular Agents/isolation & purification , Drug Discovery/methods , Gene Deletion , Microbial Sensitivity Tests/methods , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Small Molecule Libraries/pharmacology , Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Drug Resistance, Microbial , Folic Acid/biosynthesis , Molecular Targeted Therapy , Mycobacterium tuberculosis/cytology , Mycobacterium tuberculosis/enzymology , Mycolic Acids/metabolism , Reproducibility of Results , Small Molecule Libraries/classification , Small Molecule Libraries/isolation & purification , Substrate Specificity , Topoisomerase II Inhibitors/isolation & purification , Topoisomerase II Inhibitors/pharmacology , Tryptophan/biosynthesis , Tuberculosis/drug therapy , Tuberculosis/microbiology
2.
Transfusion ; 61(9): 2677-2687, 2021 09.
Article in English | MEDLINE | ID: mdl-34121205

ABSTRACT

BACKGROUND: Antibody response duration following severe acute respiratory syndrome coronavirus 2 infection tends to be variable and depends on severity of disease and method of detection. STUDY DESIGN AND METHODS: COVID-19 convalescent plasma from 18 donors was collected longitudinally for a maximum of 63-129 days following resolution of symptoms. All the samples were initially screened by the Ortho total Ig test to confirm positivity and subsequently tested with seven additional direct sandwich or indirect binding assays (Ortho, Roche, Abbott, Broad Institute) directed against a variety of antigen targets (S1, receptor binding domain, and nucleocapsid [NC]), along with two neutralization assays (Broad Institute live virus PRNT and Vitalant Research Institute [VRI] Pseudovirus reporter viral particle neutralization [RVPN]). RESULTS: The direct detection assays (Ortho total Ig total and Roche total Ig) showed increasing levels of antibodies over the time period, in contrast to the indirect IgG assays that showed a decline. Neutralization assays also demonstrated declining responses; the VRI RVPN pseudovirus had a greater rate of decline than the Broad PRNT live virus assay. DISCUSSION: These data show that in addition to variable individual responses and associations with disease severity, the detection assay chosen contributes to the heterogeneous results in antibody stability over time. Depending on the scope of the research, one assay may be preferable over another. For serosurveillance studies, direct, double Ag-sandwich assays appear to be the best choice due to their stability; in particular, algorithms that include both S1- and NC-based assays can help reduce the rate of false-positivity and discriminate between natural infection and vaccine-derived seroreactivity.


Subject(s)
Antibodies, Viral/immunology , Blood Donors , COVID-19/epidemiology , COVID-19/immunology , SARS-CoV-2/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/blood , COVID-19/diagnosis , Host-Pathogen Interactions/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroepidemiologic Studies , Serologic Tests/methods , Serologic Tests/standards , Severity of Illness Index
3.
Bioorg Med Chem Lett ; 28(22): 3529-3533, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30316633

ABSTRACT

Previous work established a coumarin scaffold as a starting point for inhibition of Mycobacterium tuberculosis (Mtb) FadD32 enzymatic activity. After further profiling of the coumarin inhibitor 4 revealed chemical instability, we discovered that a quinoline ring circumvented this instability and had the advantage of offering additional substitution vectors to further optimize. Ensuing SAR studies gave rise to quinoline-2-carboxamides with potent anti-tubercular activity. Further optimization of ADME/PK properties culminated in 21b that exhibited compelling in vivo efficacy in a mouse model of Mtb infection.


Subject(s)
Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Coumarins/chemistry , Animals , Antitubercular Agents/metabolism , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Bacterial Proteins/metabolism , Disease Models, Animal , Drug Evaluation, Preclinical , Mice , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Quinolines/chemistry , Structure-Activity Relationship , Tuberculosis/drug therapy , Tuberculosis/microbiology
4.
Antimicrob Agents Chemother ; 60(11): 6600-6608, 2016 11.
Article in English | MEDLINE | ID: mdl-27572408

ABSTRACT

Fluoroquinolones (FQs) are effective second-line drugs for treating antibiotic-resistant tuberculosis (TB) and are being considered for use as first-line agents. Because FQs are used to treat a range of infections, in a setting of undiagnosed TB, there is potential to select for drug-resistant Mycobacterium tuberculosis mutants during FQ-based treatment of other infections, including pneumonia. Here we present a detailed characterization of ofloxacin-resistant M. tuberculosis samples isolated directly from patients in Taiwan, which demonstrates that selection for FQ resistance can occur within patients who have not received FQs for the treatment of TB. Several of these samples showed no mutations in gyrA or gyrB based on PCR-based molecular assays, but genome-wide next-generation sequencing (NGS) revealed minority populations of gyrA and/or gyrB mutants. In other samples with PCR-detectable gyrA mutations, NGS revealed subpopulations containing alternative resistance-associated genotypes. Isolation of individual clones from these apparently heterogeneous samples confirmed the presence of the minority drug-resistant variants suggested by the NGS data. Further NGS of these purified clones established evolutionary links between FQ-sensitive and -resistant clones derived from the same patient, suggesting de novo emergence of FQ-resistant TB. Importantly, most of these samples were isolated from patients without a history of FQ treatment for TB. Thus, selective pressure applied by FQ monotherapy in the setting of undiagnosed TB infection appears to be able to drive the full or partial emergence of FQ-resistant M. tuberculosis, which has the potential to confound diagnostic tests for antibiotic susceptibility and limit the effectiveness of FQs in TB treatment.


Subject(s)
Antitubercular Agents/pharmacology , DNA Gyrase/genetics , Drug Resistance, Multiple, Bacterial/genetics , Mutation , Mycobacterium tuberculosis/genetics , Ofloxacin/pharmacology , Clone Cells , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Phylogeny , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/microbiology , Selection, Genetic , Tuberculosis, Multidrug-Resistant/diagnosis , Tuberculosis, Multidrug-Resistant/microbiology
5.
Proc Natl Acad Sci U S A ; 109(16): 6217-22, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22474362

ABSTRACT

With rising rates of drug-resistant infections, there is a need for diagnostic methods that rapidly can detect the presence of pathogens and reveal their susceptibility to antibiotics. Here we propose an approach to diagnosing the presence and drug-susceptibility of infectious diseases based on direct detection of RNA from clinical samples. We demonstrate that species-specific RNA signatures can be used to identify a broad spectrum of infectious agents, including bacteria, viruses, yeast, and parasites. Moreover, we show that the behavior of a small set of bacterial transcripts after a brief antibiotic pulse can rapidly differentiate drug-susceptible and -resistant organisms and that these measurements can be made directly from clinical materials. Thus, transcriptional signatures could form the basis of a uniform diagnostic platform applicable across a broad range of infectious agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests/methods , RNA/genetics , Urine/microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Cells, Cultured , Erythrocytes/parasitology , Fungi/classification , Fungi/drug effects , Fungi/genetics , HEK293 Cells , HeLa Cells , Herpesvirus 1, Human/drug effects , Herpesvirus 1, Human/genetics , Herpesvirus 2, Human/drug effects , Herpesvirus 2, Human/genetics , Humans , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Reproducibility of Results , Species Specificity
6.
Crit Rev Biochem Mol Biol ; 46(1): 41-66, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21250782

ABSTRACT

Classical genetic approaches for studying bacterial pathogenesis have provided a solid foundation for our current understanding of microbial physiology and the interactions between pathogen and host. During the past decade however, advances in several arenas have expanded the ways in which the biology of pathogens can be studied. This review discussed the impact of these advances on bacterial genetics, including the application of genomics and chemical biology to the study of pathogenesis.


Subject(s)
Bacteria/genetics , Bacteria/pathogenicity , Host-Pathogen Interactions , Animals , Bacteria/chemistry , Bacterial Infections/microbiology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genome, Bacterial , Genomics/trends , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic , Small Molecule Libraries , Virulence Factors/genetics
7.
bioRxiv ; 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39282303

ABSTRACT

A broad chemical genetics screen in Mycobacterium tuberculosis (Mtb) to identify inhibitors of established or previously untapped targets for therapeutic development yielded compounds (BRD-8000.3 and BRD-9327) that inhibit the essential efflux pump EfpA. To understand the mechanisms of inhibition by these compounds, we determined the structures of EfpA with inhibitors bound at 2.7 - 3.4 Å resolution. Our structures reveal different mechanisms of inhibition for the two inhibitors. BRD-8000.3 binds in a tunnel making contact with the lipid bilayer and extending toward the central cavity to displace the fatty acid chain of a lipid molecule bound in the apo structure, suggesting its blocking of an access route for a natural lipidic substrate, in contrast to its uncompetitive mechanism for the small molecule substrate ethidium bromide which likely enters through an alternative tunnel. Meanwhile, BRD-9327 binds in the outer vestibule without complete blockade of the substrate path to the outside, suggesting its possible inhibition of the dynamical motion necessary for "alternate access" to the two different sides of the membrane, as is characteristic of major facilitator superfamily (MFS) transporters. Both inhibitors may have a role in inhibiting the "alternate access" mechanism that could account for the uncompetitive nature of their efflux of some substrates. Our results explain the basis of the synergy of these inhibitors and their potential for combination in a multi drug strategy for anti-tuberculosis therapy. They also potentially point to a possible function for this essential efflux pump as a lipid transporter. The structures provide a foundation for rational modification of these inhibitors to increase potency.

8.
mBio ; 15(2): e0320823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38236034

ABSTRACT

Mycobacterium tuberculosis (Mtb) can adopt a non-growing dormant state during infection that may be critical to both active and latent tuberculosis. During dormancy, Mtb is widely tolerant toward antibiotics, a significant obstacle in current anti-tubercular drug regimens, and retains the ability to persist in its environment. We aimed to identify novel mechanisms that permit Mtb to survive dormancy in an in vitro carbon starvation model using transposon insertion sequencing and gene expression analysis. We identified a previously uncharacterized component of the lipid transport machinery, omamC, which was upregulated and required for survival during carbon starvation. We show that OmamC plays a role both in increasing fatty acid stores during growth in rich media and enhancing fatty acid utilization during starvation. Besides its involvement in lipid metabolism, OmamC levels affected the expression of the anti-anti-sigma factor rv0516c and other genes to improve Mtb survival during carbon starvation and increase its tolerance toward rifampicin, a first-line drug effective against non-growing Mtb. Importantly, we show that Mtb can be eradicated during carbon starvation, in an OmamC-dependent manner, by inhibiting lipid metabolism with the lipase inhibitor tetrahydrolipstatin. This work casts new light into the survival processes of non-replicating, drug-tolerant Mtb by identifying new proteins involved in lipid metabolism required for the survival of dormant bacteria and exposing a potential vulnerability that could be exploited for antibiotic discovery.IMPORTANCETuberculosis is a global threat, with ~10 million yearly active cases. Many more people, however, live with "latent" infection, where Mycobacterium tuberculosis survives in a non-replicative form. When latent bacteria activate and regrow, they elicit immune responses and result in significant host damage. Replicating and non-growing bacilli can co-exist; however, non-growing bacteria are considerably less sensitive to antibiotics, thus complicating treatment by necessitating long treatment durations. Here, we sought to identify genes important for bacterial survival in this non-growing state using a carbon starvation model. We found that a previously uncharacterized gene, omamC, is involved in storing and utilizing fatty acids as bacteria transition between these two states. Importantly, inhibiting lipid metabolism using a lipase inhibitor eradicates non-growing bacteria. Thus, targeting lipid metabolism may be a viable strategy for treating the non-growing population in strategies to shorten treatment durations of tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Humans , Mycobacterium tuberculosis/metabolism , Fatty Acids/metabolism , Anti-Bacterial Agents/pharmacology , Carbon/metabolism , Lipase/metabolism
9.
Elife ; 62017 02 21.
Article in English | MEDLINE | ID: mdl-28220755

ABSTRACT

Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.


Subject(s)
Drug Resistance, Bacterial , Mutation , Mycobacterium smegmatis/drug effects , Mycobacterium smegmatis/genetics , Ribosomes/drug effects , Ribosomes/genetics , Bacterial Proteins/biosynthesis , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Proteome/analysis
11.
ACS Infect Dis ; 2(2): 104-10, 2016 02 12.
Article in English | MEDLINE | ID: mdl-27624961

ABSTRACT

Recent studies have renewed interest in ß-lactam antibiotics as a potential treatment for Mycobacterium tuberculosis infection. To explore the opportunities and limitations of this approach, we sought to better understand potential resistance mechanisms to ß-lactam antibiotics in M. tuberculosis. We identified mutations in the penicillin-binding protein (PBP) ponA2 that were able to confer some degree of resistance to the cephalosporin subclass of ß-lactams. Surprisingly, deletion of ponA2 also confers resistance, demonstrating that ß-lactam resistance can spontaneously arise from PBP loss of function. We show that ponA2 mutants resistant to the cephalosporin subclass of ß-lactams in fact show increased susceptibility to meropenem, a carbapenem that is known to target l,d-transpeptidases, thereby suggesting that in the absence of PonA2, an alternative mode of peptidoglycan synthesis likely becomes essential. Consistent with this hypothesis, a negative genetic selection identified the l,d-transpeptidase ldtMt2 as essential in the absence of ponA2. The mechanism of ß-lactam resistance we outline is consistent with emerging models of ß-lactam killing, while the investigation of ponA2 downstream and synthetic lethal genes sheds light on the mechanism of cell wall biosynthesis and the interaction between conventional PBPs and l,d-transpeptidases.


Subject(s)
Mycobacterium tuberculosis/drug effects , Penicillin-Binding Proteins/deficiency , Tuberculosis/microbiology , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamase Inhibitors/pharmacology , beta-Lactams/antagonists & inhibitors , Gene Expression Regulation, Bacterial , Mutagenesis, Insertional , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/growth & development , Penicillin-Binding Proteins/genetics , Penicillin-Binding Proteins/metabolism , Structure-Activity Relationship
12.
Tuberculosis (Edinb) ; 84(1-2): 29-44, 2004.
Article in English | MEDLINE | ID: mdl-14670344

ABSTRACT

The success of Mycobacterium tuberculosis as a pathogen is largely attributable to its ability to persist in host tissues, where drugs that are rapidly bactericidal in vitro require prolonged administration to achieve comparable effects. Latency is a frequent outcome of untreated or incompletely treated M. tuberculosis infection, creating a long-standing reservoir of future disease and contagion. Although the interactions between the bacterium and its host that result in chronic or latent infection are still largely undefined, recent years have seen a resurgence of interest and research activity in this area. Here we review some of the classic studies that have led to our current understanding of M. tuberculosis persistence, and discuss the varied approaches that are now being brought to bear on this important problem.


Subject(s)
Mycobacterium tuberculosis/physiology , Tuberculosis/microbiology , Animals , Chronic Disease , Disease Models, Animal , Drug Resistance, Microbial , Forecasting , Humans , Mycobacterium tuberculosis/drug effects
13.
Infect Immun ; 73(1): 546-51, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15618194

ABSTRACT

The dynamics of host-pathogen interactions have important implications for the design of new antimicrobial agents to treat chronic infections such as tuberculosis (TB), which is notoriously refractory to conventional drug therapy. In the mouse model of TB, an acute phase of exponential bacterial growth in the lungs is followed by a chronic phase characterized by relatively stable numbers of bacteria. This equilibrium could be static, with little ongoing replication, or dynamic, with continuous bacterial multiplication balanced by bacterial killing. A static model predicts a close correspondence between "viable counts" (live bacteria) and "total counts" (live plus dead bacteria) in the lungs over time. A dynamic model predicts the divergence of total counts and viable counts over time due to the accumulation of dead bacteria. Here, viable counts are defined as bacterial CFU enumerated by plating lung homogenates; total counts are defined as bacterial chromosome equivalents (CEQ) enumerated by using quantitative real-time PCR. We show that the viable and total bacterial counts in the lungs of chronically infected mice do not diverge over time. Rapid degradation of dead bacteria is unlikely to account for the stability of bacterial CEQ numbers in the lungs over time, because treatment of mice with isoniazid for 8 weeks led to a marked reduction in the number of CFU without reducing the number of CEQ. These observations support the hypothesis that the stable number of bacterial CFU in the lungs during chronic infection represents a static equilibrium between host and pathogen.


Subject(s)
Lung/microbiology , Mycobacterium tuberculosis/growth & development , Tuberculosis/microbiology , Animals , Chromosomes, Bacterial , Chronic Disease , Colony Count, Microbial , Mice , Mice, Inbred C57BL
14.
Infect Immun ; 72(9): 5315-21, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15322028

ABSTRACT

Tuberculosis (TB) is characterized by lifetime persistence of Mycobacterium tuberculosis. Despite the induction of a vigorous host immune response that curtails disease progression in the majority of cases, the organism is not eliminated. Subsequent immunosuppression can lead to reactivation after a prolonged period of clinical latency. Thus, while it is clear that protective immune mechanisms are engaged during M. tuberculosis infection, it also appears that the pathogen has evolved effective countermechanisms. Genetic studies with animal infection models and with patients have revealed a key role for the cytokine gamma interferon (IFN-gamma) in resistance to TB. IFN-gamma activates a large number of antimicrobial pathways. Three of these IFN-gamma-dependent mechanisms have been implicated in defense against M. tuberculosis: inducible nitric oxide synthase (iNOS), phagosome oxidase (phox), and the phagosome-associated GTPase LRG-47. In order to identify bacterial genes that provide protection against specific host immune pathways, we have developed the strategy of differential signature-tagged transposon mutagenesis. Using this approach we have identified three M. tuberculosis genes that are essential for progressive M. tuberculosis growth and rapid lethality in iNOS-deficient mice but not in IFN-gamma-deficient mice. We propose that these genes are involved in pathways that allow M. tuberculosis to counter IFN-gamma-dependent immune mechanisms other than iNOS.


Subject(s)
Bacterial Proteins/metabolism , Interferon-gamma/metabolism , Mutation , Mycobacterium tuberculosis/pathogenicity , Tuberculosis, Pulmonary/immunology , Animals , Bacterial Proteins/genetics , DNA Transposable Elements , Female , Humans , Interferon-gamma/genetics , Lung/microbiology , Male , Mice , Mice, Inbred C57BL , Mutagenesis , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/immunology , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Nitric Oxide Synthase Type II , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL