Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36835023

ABSTRACT

A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.


Subject(s)
Antimalarials , Antimalarials/pharmacology , Arginase/pharmacology , Molecular Docking Simulation , Chloroquine/pharmacology , Plasmodium falciparum , Structure-Activity Relationship
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36499415

ABSTRACT

A series of thirty-two anilides of 3-(trifluoromethyl)cinnamic acid (series 1) and 4-(trifluoromethyl)cinnamic acid (series 2) was prepared by microwave-assisted synthesis. All the compounds were tested against reference strains Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 and resistant clinical isolates of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant E. faecalis (VRE). All the compounds were evaluated in vitro against Mycobacterium smegmatis ATCC 700084 and M. marinum CAMP 5644. (2E)-3-[3-(Trifluoromethyl)phenyl]-N-[4-(trifluoromethyl)phenyl]prop-2-enamide (1j), (2E)-N-(3,5-dichlorophenyl)-3-[3-(trifluoromethyl)phenyl]prop-2-enamide (1o) and (2E)-N-[3-(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)-phenyl]prop-2-enamide (2i), (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-[4-(trifluoromethyl)phenyl]-prop-2-enamide (2p) showed antistaphylococcal (MICs/MBCs 0.15-5.57 µM) as well as anti-enterococcal (MICs/MBCs 2.34-44.5 µM) activity. The growth of M. marinum was strongly inhibited by compounds 1j and 2p in a MIC range from 0.29 to 2.34 µM, while all the agents of series 1 showed activity against M. smegnatis (MICs ranged from 9.36 to 51.7 µM). The performed docking study demonstrated the ability of the compounds to bind to the active site of the mycobacterial enzyme InhA. The compounds had a significant effect on the inhibition of bacterial respiration, as demonstrated by the MTT assay. The compounds showed not only bacteriostatic activity but also bactericidal activity. Preliminary in vitro cytotoxicity screening was assessed using the human monocytic leukemia cell line THP-1 and, except for compound 2p, all effective agents did show insignificant cytotoxic effect. Compound 2p is an interesting anti-invasive agent with dual (cytotoxic and antibacterial) activity, while compounds 1j and 1o are the most interesting purely antibacterial compounds within the prepared molecules.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Microbial Sensitivity Tests , Cinnamates/pharmacology , Cinnamates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
3.
Molecules ; 27(22)2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36431900

ABSTRACT

Due to the urgent need of innovation in the antimalarial therapeutic arsenal, a series of thirty-seven ring-substituted N-arylcinnamanilides prepared by microwave-assisted synthesis were subjected to primary screening against the chloroquine-sensitive strain of P. falciparum 3D7/MRA-102. The lipophilicity of all compounds was experimentally determined as the logarithm of the capacity factor k, and these data were subsequently used in the discussion of structure-activity relationships. Among the screened compounds, fourteen derivatives exhibited IC50 from 0.58 to 31 µM, whereas (2E)-N-(4-bromo-2-chlorophenyl)-3-phenylprop-2-enamide (24) was the most effective agent (IC50 = 0.58 µM). In addition, (2E)-N-[2,6-dibromo-4-(trifluoromethyl)- phenyl]-3-phenylprop-2-enamide (36), (2E)-N-[4-nitro-3-(trifluoromethyl)phenyl]-3-phenylprop- 2-enamide (18), (2E)-N-(2-bromo-5-fluorophenyl)-3-phenylprop-2-enamide (23), and (2E)-3-phenyl-N-(3,4,5-trichlorophenyl)prop-2-enamide (33) demonstrated efficacy in the IC50 range from 2.0 to 4.3 µM, comparable to the clinically used standard chloroquine. The results of a cell viability screening performed using THP1-Blue™ NF-κB cells showed that none of these highly active compounds displayed any significant cytotoxic effect up to 20 µM, which makes them promising Plasmodium selective substances for further investigations.


Subject(s)
Antimalarials , Folic Acid Antagonists , Malaria, Falciparum , Humans , Antimalarials/pharmacology , Chloroquine/pharmacology , Structure-Activity Relationship
4.
Molecules ; 26(14)2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34299611

ABSTRACT

A set of twenty-four 3-hydroxynaphthalene-2-carboxanilides, disubstituted on the anilide ring by combinations of methoxy/methyl/fluoro/chloro/bromo and ditrifluoromethyl groups at different positions, was prepared. The compounds were tested for their ability to inhibit photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3,5-Difluorophenyl)-, N-(3,5-dimethylphenyl)-, N-(2,5-difluorophenyl)- and N-(2,5-dimethylphenyl)-3-hydroxynaphthalene-2-carboxamides showed the highest PET-inhibiting activity (IC50 ~ 10 µM) within the series. These compounds were able to inhibit PET in photosystem II. It has been found that PET-inhibiting activity strongly depends on the position of the individual substituents on the anilide ring and on the lipophilicity of the compounds. The electron-withdrawing properties of the substituents contribute towards the PET activity of these compounds.


Subject(s)
Chloroplasts/drug effects , Naphthalenes/metabolism , Photosynthesis/drug effects , Spinacia oleracea/drug effects , Chloroplasts/metabolism , Electron Transport/drug effects , Herbicides/chemistry , Herbicides/metabolism , Naphthalenes/chemistry , Photosystem II Protein Complex/antagonists & inhibitors , Photosystem II Protein Complex/metabolism , Spinacia oleracea/metabolism
5.
Bioorg Chem ; 103: 104145, 2020 10.
Article in English | MEDLINE | ID: mdl-32801082

ABSTRACT

The oncogenic mutated kinase BRAFV600E is an attractive molecular target because it is expressed in several human cancers, including melanoma. To present, only three BRAF small inhibitors are approved by the FDA for the treatment of patients with metastatic melanoma: Vemurafenib, Dabrafenib and Encorafenib. Although many protocol treatments have been probed in clinical trials, BRAF inhibition has a limited effectiveness because patients invariably develop resistance and secondary toxic effects associated with the therapy. These limitations highlight the importance of designing new and better inhibitors with different structures that could establish different interactions in the active site of the enzyme and therefore decrease resistance progress. Considering the data from our previous report, here we studied two series of derivatives of structural scaffolds as potential BRAF inhibitors: hydroxynaphthalenecarboxamides and substituted piperazinylpropandiols. Our results indicate that structural analogues of substituted piperazinylpropandiols do not show significantly better activities to that previously reported. In contrast, the hydroxynaphthalenecarboxamides derivatives significantly inhibited cell viability and ERK phosphorylation, a measure of BRAF activity, in Lu1205 BRAFV600E melanoma cells. In order to better understand these experimental results, we carried out a molecular modeling study using different combined techniques: docking, MD simulations and quantum theory of atoms in molecules (QTAIM) calculations. Thus, by using this approach we determined that the molecular interactions that stabilize the different molecular complexes are closely related to Vemurafenib, a well-documented BRAF inhibitor. Furthermore, we found that bi-substituted compounds may interact more strongly respect to the mono-substituted analogues, by establishing additional interactions with the DFG-loop at the BRAF-active site. On the bases of these results we synthesized and tested a new series of hydroxynaphthalenecarboxamides bi-substituted. Remarkably, all these compounds displayed significant inhibitory effects on the bioassays performed. Thus, the structural information reported here is important for the design of new BRAFV600E inhibitors possessing this type of structural scaffold.


Subject(s)
Antineoplastic Agents/therapeutic use , Melanoma/drug therapy , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Humans , Models, Molecular , Phosphorylation
6.
Int J Mol Sci ; 21(10)2020 May 12.
Article in English | MEDLINE | ID: mdl-32408543

ABSTRACT

Ring-substituted 1-hydroxynaphthalene-2-carboxanilides were previously investigated for their antimycobacterial properties. In our study, we have shown their antiproliferative and cell death-inducing effects in cancer cell lines. Cell proliferation and viability were assessed by WST-1 assay and a dye exclusion test, respectively. Cell cycle distribution, phosphatidylserine externalization, levels of reactive oxygen or nitrogen species (RONS), mitochondrial membrane depolarization, and release of cytochrome c were estimated by flow cytometry. Levels of regulatory proteins were determined by Western blotting. Our data suggest that the ability to inhibit the proliferation of THP-1 or MCF-7 cells might be referred to meta- or para-substituted derivatives with electron-withdrawing groups -F, -Br, or -CF3 at anilide moiety. This effect was accompanied by accumulation of cells in G1 phase. Compound 10 also induced apoptosis in THP-1 cells in association with a loss of mitochondrial membrane potential and production of mitochondrial superoxide. Our study provides a new insight into the action of salicylanilide derivatives, hydroxynaphthalene carboxamides, in cancer cells. Thus, their structure merits further investigation as a model moiety of new small-molecule compounds with potential anticancer properties.


Subject(s)
Anilides/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Mitochondria/drug effects , Naphthols/chemistry , Anilides/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cell Survival/drug effects , Humans , MCF-7 Cells , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Molecular Structure , Reactive Oxygen Species/metabolism , Salicylanilides/chemistry , Salicylanilides/pharmacology , Structure-Activity Relationship , Superoxides/metabolism , THP-1 Cells
7.
Int J Mol Sci ; 21(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916824

ABSTRACT

A series of twenty-two novel N-(disubstituted-phenyl)-3-hydroxynaphthalene- 2-carboxamide derivatives was synthesized and characterized as potential antimicrobial agents. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[2-chloro-5-(trifluoromethyl)phenyl]-3-hydroxy- naphthalene-2-carboxamide showed submicromolar (MICs 0.16-0.68 µM) activity against methicillin-resistant Staphylococcus aureus isolates. N-[3,5-bis(trifluoromethyl)phenyl]- and N-[4-bromo-3-(trifluoromethyl)phenyl]-3-hydroxynaphthalene-2-carboxamide revealed activity against M. tuberculosis (both MICs 10 µM) comparable with that of rifampicin. Synergistic activity was observed for the combinations of ciprofloxacin with N-[4-bromo-3-(trifluoromethyl)phenyl]- and N-(4-bromo-3-fluorophenyl)-3-hydroxynaphthalene-2-carboxamides against MRSA SA 630 isolate. The similarity-related property space assessment for the congeneric series of structurally related carboxamide derivatives was performed using the principal component analysis. Interestingly, different distribution of mono-halogenated carboxamide derivatives with the -CF3 substituent is accompanied by the increased activity profile. A symmetric matrix of Tanimoto coefficients indicated the structural dissimilarities of dichloro- and dimetoxy-substituted isomers from the remaining ones. Moreover, the quantitative sampling of similarity-related activity landscape provided a subtle picture of favorable and disallowed structural modifications that are valid for determining activity cliffs. Finally, the advanced method of neural network quantitative SAR was engaged to illustrate the key 3D steric/electronic/lipophilic features of the ligand-site composition by the systematic probing of the functional group.


Subject(s)
Anti-Infective Agents/chemical synthesis , Methicillin-Resistant Staphylococcus aureus , Mycobacterium tuberculosis , Naphthalenes/chemistry , Microbial Sensitivity Tests
8.
Bioorg Chem ; 91: 103125, 2019 10.
Article in English | MEDLINE | ID: mdl-31401373

ABSTRACT

The identification of the V600E activating mutation in the protein kinase BRAF in around 50% of melanoma patients has driven the development of highly potent small inhibitors (BRAFi) of the mutated protein. To date, Dabrafenib and Vemurafenib, two specific BRAFi, have been clinically approved for the treatment of metastatic melanoma. Unfortunately, after the initial response, tumors become resistant and patients develop a progressive and lethal disease, making imperative the development of new therapeutic options. The main objective of this work was to find new BRAF inhibitors with different structural scaffolds than those of the known inhibitors. Our study was carried out in different stages; in the first step we performed a virtual screening that allowed us to identify potential new inhibitors. In the second step, we synthesized and tested the inhibitory activity of the novel compounds founded. Finally, we conducted a molecular modelling study that allowed us to understand interactions at the molecular level that stabilize the formation of the different molecular complexes. Our theoretical and experimental study allowed the identification of four new structural scaffolds, which could be used as starting structures for the design and development of new inhibitors of BRAF. Our experimental data indicate that the most active compounds reduced significantly ERK½ phosphorylation, a measure of BRAF inhibition, and cell viability. Thus, from our theoretical and experimental results, we propose new substituted hydroxynaphthalenecarboxamides, N-(hetero)aryl-piperazinylhydroxyalkylphenylcarbamates, substituted piperazinylethanols and substituted piperazinylpropandiols as initial structures for the development of new inhibitors for BRAF. Moreover, by performing QTAIM analysis, we are able to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analysis indicates which portion of the different molecules must be changed in order to obtain an increase in the binding affinity of these new ligands.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/metabolism , Proto-Oncogene Proteins B-raf/metabolism , Vemurafenib/pharmacology
9.
Molecules ; 24(16)2019 Aug 18.
Article in English | MEDLINE | ID: mdl-31426567

ABSTRACT

A series of twenty-six methoxylated and methylated N-aryl-1-hydroxynaphthalene- 2-carboxanilides was prepared and characterized as potential anti-invasive agents. The molecular structure of N-(2,5-dimethylphenyl)-1-hydroxynaphthalene-2-carboxamide as a model compound was determined by single-crystal X-ray diffraction. All the analysed compounds were tested against the reference strain Staphylococcus aureus and three clinical isolates of methicillin-resistant S. aureus as well as against Mycobacterium tuberculosis and M. kansasii. In addition, the inhibitory profile of photosynthetic electron transport in spinach (Spinacia oleracea L.) chloroplasts was specified. In vitro cytotoxicity of the most effective compounds was tested on the human monocytic leukaemia THP-1 cell line. The activities of N-(3,5-dimethylphenyl)-, N-(3-fluoro-5-methoxy-phenyl)- and N-(3,5-dimethoxyphenyl)-1-hydroxynaphthalene-2-carbox- amide were comparable with or even better than the commonly used standards ampicillin and isoniazid. All promising compounds did not show any cytotoxic effect at the concentration >30 µM. Moreover, an in silico evaluation of clogP features was performed for the entire set of the carboxamides using a range of software lipophilicity predictors, and cross-comparison with the experimentally determined lipophilicity (log k), in consensus lipophilicity estimation, was conducted as well. Principal component analysis was employed to illustrate noticeable variations with respect to the molecular lipophilicity (theoretical/experimental) and rule-of-five violations. Additionally, ligand-oriented studies for the assessment of the three-dimensional quantitative structure-activity relationship profile were carried out with the comparative molecular surface analysis to determine electron and/or steric factors that potentially contribute to the biological activities of the investigated compounds.


Subject(s)
Anilides/pharmacology , Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mycobacterium kansasii/drug effects , Mycobacterium tuberculosis/drug effects , Naphthols/pharmacology , Ampicillin/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Chloroplasts/drug effects , Chloroplasts/physiology , Electron Transport/drug effects , Humans , Isoniazid/pharmacology , Methicillin-Resistant Staphylococcus aureus/growth & development , Methylation , Microbial Sensitivity Tests , Mycobacterium kansasii/growth & development , Mycobacterium tuberculosis/growth & development , Naphthols/chemical synthesis , Naphthols/chemistry , Photosynthesis/drug effects , Principal Component Analysis , Spinacia oleracea/chemistry , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism , Structure-Activity Relationship , THP-1 Cells
10.
Molecules ; 23(7)2018 07 04.
Article in English | MEDLINE | ID: mdl-29973562

ABSTRACT

The evaluation of the lipophilic characteristics of biologically active agents is indispensable for the rational design of ADMET-tailored structure⁻activity models. N-Alkoxy-3-hydroxynaphthalene-2-carboxanilides, N-alkoxy-1-hydroxynaphthalene-2-carboxanilides, and N-alkoxy-2-hydroxynaphthalene-1-carboxanilides were recently reported as a series of compounds with antimycobacterial, antibacterial, and herbicidal activity. As it was found that the lipophilicity of these biologically active agents determines their activity, the hydro-lipophilic properties of all three series were investigated in this study. All 57 anilides were analyzed using the reversed-phase high-performance liquid chromatography method for the measurement of lipophilicity. The procedure was performed under isocratic conditions with methanol as an organic modifier in the mobile phase using an end-capped non-polar C18 stationary reversed-phase column. In the present study, a range of software lipophilicity predictors for the estimation of clogP values of a set of N-alkoxyphenylhydroxynaphthalenecarboxamides was employed and subsequently cross-compared with experimental parameters. Thus, the empirical values of lipophilicity (logk) and the distributive parameters (π) were compared with the corresponding in silico characteristics that were calculated using alternative methods for deducing the lipophilic features. To scrutinize (dis)similarities between the derivatives, a PCA procedure was applied to visualize the major differences in the performance of molecules with respect to their lipophilic profile, molecular weight, and violations of Lipinski's Rule of Five.


Subject(s)
Anilides/chemistry , Naphthalenes/chemistry , Chromatography, Reverse-Phase , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 27(9): 1881-1885, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28363749

ABSTRACT

N-(Alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides (series A) and N-(alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides (series B) affecting photosystem (PS) II inhibited photosynthetic electron transport (PET) in spinach chloroplasts. Their inhibitory activity depended on the compound lipophilicity as well as on the position of the alkoxy substituent. The most potent PET inhibitors were 2-hydroxy-N-phenylnaphthalene-1-carboxamide and N-[3-(but-2-yloxy)phenyl]-2-hydroxynaphthalene-1-carboxamide within series A (IC50=28.9 and 42.5µM, respectively) and 1-hydroxy-N-(3-propoxyphenyl)naphthalene-2-carboxamide and 1-hydroxy-N-(3-ethoxyphenyl)-naphthalene-2-carboxamide (IC50=2.0 and 3.1µM, respectively) within series B. The inhibitory activity of C'(3) or C'(4) alkoxy substituted compounds of series B was considerably higher than that of C'(2) ones within series A. The PET-inhibiting activities of both series were compared with the PET inhibition of isomeric N-alkoxyphenyl-3-hydroxynaphthalene-2-carboxamides (series C) reported recently. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PSII can be suggested as the site of action of the compounds.


Subject(s)
Anti-Bacterial Agents/metabolism , Naphthalenes/metabolism , Photosystem II Protein Complex/antagonists & inhibitors , Plant Proteins/antagonists & inhibitors , Spinacia oleracea/drug effects , Anti-Bacterial Agents/chemistry , Electron Transport/drug effects , Naphthalenes/chemistry , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Spinacia oleracea/metabolism
12.
Molecules ; 22(7)2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714937

ABSTRACT

Eight 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates and eight 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl alkylcarbamates were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. The PET-inhibiting activity of the compounds was relatively low; the corresponding IC50 values ranged from 0.05 to 0.664 mmol/L; and the highest activity within the series of compounds was observed for 1-[(2-chlorophenyl)-carbamoyl]naphthalen-2-yl propylcarbamate. It has been proven that the compounds are PET-inhibitors in photosystem II. Despite rather low PET-inhibiting activities, primary structure-activity trends can be discussed.


Subject(s)
Carbamates/pharmacology , Electron Transport/drug effects , Photosynthesis/drug effects , Carbamates/chemistry , Chloroplasts/drug effects , Chloroplasts/metabolism , Inhibitory Concentration 50 , Spinacia oleracea/metabolism , Structure-Activity Relationship
13.
Molecules ; 22(10)2017 Oct 12.
Article in English | MEDLINE | ID: mdl-29023407

ABSTRACT

Series of seventeen new multihalogenated 1-hydroxynaphthalene-2-carboxanilides was prepared and characterized. All the compounds were tested for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. 1-Hydroxy-N-phenylnaphthalene-2-carboxamides substituted in the anilide part by 3,5-dichloro-, 4-bromo-3-chloro-, 2,5-dibromo- and 3,4,5-trichloro atoms were the most potent PET inhibitors (IC50 = 5.2, 6.7, 7.6 and 8.0 µM, respectively). The inhibitory activity of these compounds depends on the position and the type of halogen substituents, i.e., on lipophilicity and electronic properties of individual substituents of the anilide part of the molecule. Interactions of the studied compounds with chlorophyll a and aromatic amino acids present in pigment-protein complexes mainly in PS II were documented by fluorescence spectroscopy. The section between P680 and plastoquinone QB in the PET chain occurring on the acceptor side of PS II can be suggested as the site of action of the compounds. The structure-activity relationships are discussed.


Subject(s)
Electron Transport/drug effects , Naphthols , Photosynthesis/drug effects , Photosystem II Protein Complex/metabolism , Chloroplasts/drug effects , Chloroplasts/metabolism , Inhibitory Concentration 50 , Naphthols/chemical synthesis , Naphthols/chemistry , Naphthols/pharmacology , Spinacia oleracea/drug effects , Spinacia oleracea/metabolism
14.
Molecules ; 22(12)2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29189762

ABSTRACT

Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 µM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 µM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.


Subject(s)
Antitubercular Agents/chemical synthesis , Antitubercular Agents/pharmacology , Piperazines/chemical synthesis , Piperazines/pharmacology , Antitubercular Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/drug effects , Piperazines/chemistry , Spectrum Analysis , Structure-Activity Relationship
15.
Int J Mol Sci ; 17(8)2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27483236

ABSTRACT

Ring-substituted hydroxynaphthanilides are considered as cyclic analogues of salicylanilides, compounds possessing a wide range of pharmacological activities, including promising anticancer properties. The aim of this study was to evaluate the potential anticancer effect of novel nitro-substituted hydroxynaphthanilides with a special focus on structure-activity relationships. The antiproliferative effect was assessed by Water Soluble Tetrazolium Salts-1 (WST-1) assay, and cytotoxicity was evaluated via dye exclusion test. Flow cytometry was used for cell cycle analysis and detection of apoptosis using Annexin V-FITC/PI assay. Protein expression was estimated by Western blotting. Our data indicate that the potential to cause the antiproliferative effect increases with the shift of the nitro substituent from the ortho- to the para-position. The most potent compounds, 3-hydroxy-N-(3-nitrophenyl)naphthalene-2-carboxamide (2), and 2-hydroxy-N-(4-nitrophenyl)-naphthalene-1-carboxamide (6) showed antiproliferative activity against THP-1 and MCF-7 cancer cells without affecting the proliferation of 3T3-L1 non-tumour cells. Compounds 2 and 6 induced the accumulation of THP-1 and MCF-7 cells in G1 phase associated with the downregulation of cyclin E1 protein levels, while the levels of cyclin B1 were not affected. Moreover, compound 2 was found to exert the pro-apoptotic effect on the THP-1 cells. These results suggest that hydroxynaphthanilides might represent a potential model structure for the development of novel anticancer agents.


Subject(s)
Anilides/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Naphthalenes/pharmacology , Naphthols/pharmacology , Cell Cycle/drug effects , Humans , MCF-7 Cells , Molecular Structure , Naphthalenes/chemistry , Structure-Activity Relationship
16.
Molecules ; 21(8)2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27537867

ABSTRACT

A series of nineteen N-(alkoxyphenyl)-2-hydroxynaphthalene-1-carboxamides and a series of their nineteen positional isomers N-(alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides were prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, M. kansasii and M. smegmatis. Screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. Some of the tested compounds showed antimycobacterial activity comparable with or higher than that of rifampicin. For example, 2-hydroxy-N-(4-propoxyphenyl)-naphthalene-1-carboxamide showed the highest activity (MIC = 12 µM) against M. tuberculosis with insignificant cytotoxicity. N-[3-(But-2-yloxy)phenyl]- and N-[4-(but-2-yloxy)phenyl]-2-hydroxy-naphthalene-1-carboxamide demonstrated high activity against all tested mycobacterial strains and insignificant cytotoxicity. N-(Alkoxyphenyl)-1-hydroxynaphthalene-2-carboxamides demonstrated rather high effect against M. smegmatis and M. kansasii and strong antiproliferative effect against the human THP-1 cell line. Lipophilicity was found as the main physicochemical parameter influencing the activity. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay. Structure-activity relationships are discussed.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Microbial Viability/drug effects , Naphthols/chemical synthesis , Naphthols/pharmacology , Anti-Bacterial Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium kansasii/drug effects , Mycobacterium smegmatis/drug effects , Mycobacterium tuberculosis/drug effects , Naphthols/chemistry , Structure-Activity Relationship
17.
Molecules ; 21(9)2016 Sep 07.
Article in English | MEDLINE | ID: mdl-27617988

ABSTRACT

Series of thirteen 1-[(2-chlorophenyl)carbamoyl]naphthalen-2-yl carbamates and thirteen 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl carbamates with alkyl/cycloalkyl/arylalkyl chains were prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, two methicillin-resistant S. aureus strains, Mycobacterium marinum, and M. kansasii. 1-[(2-Chlorophenyl)carbamoyl]naphthalen-2-yl ethylcarbamate and 1-[(2-nitrophenyl)carbamoyl]naphthalen-2-yl ethylcarbamate showed antistaphylococcal (MICs = 42 µM against MRSA) and antimycobacterial (MICs = 21 µM) activity against the tested strains comparable with or higher than that of the standards ampicillin and isoniazid. In the case of bulkier carbamate tails (R > propyl/isopropyl), the activity was similar (MICs ca. 70 µM). Screening of the cytotoxicity of both of the most effective compounds was performed using THP-1 cells, and no significant lethal effect was observed (LD50 >30 µM). The structure-activity relationships are discussed.


Subject(s)
Anti-Infective Agents , Carbamates , Cytotoxins , Methicillin-Resistant Staphylococcus aureus/growth & development , Mycobacterium tuberculosis/growth & development , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Carbamates/chemical synthesis , Carbamates/chemistry , Carbamates/pharmacology , Cell Line, Tumor , Cytotoxins/chemical synthesis , Cytotoxins/chemistry , Cytotoxins/pharmacology , Humans
18.
Bioorg Med Chem ; 23(15): 4188-4196, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26183541

ABSTRACT

In this study, a series of twenty-two ring-substituted 8-hydroxyquinoline-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Some of the tested compounds showed the antimycobacterial activity against M. avium subsp. paratuberculosis comparable with or higher than that of rifampicin. 8-Hydroxy-N-[3-(trifluoromethyl)phenyl]- and 8-hydroxy-N-[4-(trifluoromethyl)phenyl]quinoline-2-carboxamide showed MIC=24 µM against all tested mycobacterial strains. 3-Methoxyphenyl- and 3-methylphenyl derivatives expressed MIC=27 or 29 µM also against all the tested strains. Their activity against M. avium subsp. paratuberculosis was 4-fold higher than that of rifampicin. 2-Bromophenyl- and 2-(trifluoromethyl)phenyl derivatives had MIC=23 or 24 µM against M. tuberculosis. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of cytotoxicity of the compounds was performed using the THP-1 cells, and no significant lethal effect was observed up to tested concentration 30 µM. The structure-activity relationships are discussed.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Structure-Activity Relationship , Cell Line , Drug Evaluation, Preclinical/methods , Humans , Microbial Sensitivity Tests , Mycobacterium avium/drug effects , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/metabolism , Oxyquinoline/chemistry , Toxicity Tests
19.
Bioorg Med Chem ; 23(9): 2035-43, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25819330

ABSTRACT

In this study, a series of twenty-two ring-substituted 6-hydroxynaphthalene-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Derivatives substituted by trifluoromethyl, bromo, methyl and methoxy moieties in C'(3) and C'(4) positions of the anilide ring showed 2-fold higher activity against M. tuberculosis than isoniazid and 4.5-fold higher activity against M. avium subsp. paratuberculosis than rifampicin. 6-Hydroxy-N-(2-methylphenyl)naphthalene-2-carboxamide had MIC=29 µM against M. avium complex. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using the THP-1 cells, and no significant lethal effect was observed. The structure-activity relationships are discussed.


Subject(s)
Anilides/pharmacology , Anti-Bacterial Agents/pharmacology , Mycobacterium/drug effects , Naphthols/pharmacology , Anilides/chemical synthesis , Anilides/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium/cytology , Naphthols/chemical synthesis , Naphthols/chemistry , Structure-Activity Relationship
20.
Molecules ; 20(6): 9767-87, 2015 May 27.
Article in English | MEDLINE | ID: mdl-26023938

ABSTRACT

A series of fifteen new N-alkoxyphenylanilides of 3-hydroxynaphthalene-2-carboxylic acid was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra and M. avium subsp. paratuberculosis. Some of the tested compounds showed antibacterial and antimycobacterial activity against the tested strains comparable with or higher than that of the standards ampicillin or rifampicin. 3-Hydroxy-N-(2-propoxyphenyl)naphthalene-2-carboxamide and N-[2-(but-2-yloxy)-phenyl]-3-hydroxynaphthalene-2-carboxamide had MIC = 12 µM against all methicillin-resistant S. aureus strains; thus their activity is 4-fold higher than that of ampicillin. The second mentioned compound as well as 3-hydroxy-N-[3-(prop-2-yloxy)phenyl]-naphthalene-2-carboxamide had MICs = 23 µM and 24 µM against M. tuberculosis respectively. N-[2-(But-2-yloxy)phenyl]-3-hydroxynaphthalene-2-carboxamide demonstrated higher activity against M. avium subsp. paratuberculosis than rifampicin. Screening of the cytotoxicity of the most effective antimycobacterial compounds was performed using THP-1 cells, and no significant lethal effect was observed for the most potent compounds. The compounds were additionally tested for their activity related to inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. N-(3-Ethoxyphenyl)-3-hydroxynaphthalene-2-carboxamide (IC50 = 4.5 µM) was the most active PET inhibitor. The structure-activity relationships are discussed.


Subject(s)
Anilides/pharmacology , Anti-Bacterial Agents/pharmacology , Naphthalenes/pharmacology , Ampicillin/pharmacology , Anilides/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Cell Line , Cell Survival/drug effects , Chloroplasts/drug effects , Chloroplasts/physiology , Electron Transport/drug effects , Electron Transport/physiology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Microbial Viability/drug effects , Monocytes/cytology , Monocytes/drug effects , Mycobacterium avium subsp. paratuberculosis/drug effects , Mycobacterium avium subsp. paratuberculosis/growth & development , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Naphthalenes/chemical synthesis , Photosynthesis/drug effects , Photosynthesis/physiology , Rifampin/pharmacology , Spinacia oleracea/drug effects , Spinacia oleracea/physiology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL