Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 48(5): 2372-2387, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31925439

ABSTRACT

A significant number of X-linked genes escape from X chromosome inactivation and are associated with a distinct epigenetic signature. One epigenetic modification that strongly correlates with X-escape is reduced DNA methylation in promoter regions. Here, we created an artificial escape by editing DNA methylation on the promoter of CDKL5, a gene causative for an infantile epilepsy, from the silenced X-chromosomal allele in human neuronal-like cells. We identify that a fusion of the catalytic domain of TET1 to dCas9 targeted to the CDKL5 promoter using three guide RNAs causes significant reactivation of the inactive allele in combination with removal of methyl groups from CpG dinucleotides. Strikingly, we demonstrate that co-expression of TET1 and a VP64 transactivator have a synergistic effect on the reactivation of the inactive allele to levels >60% of the active allele. We further used a multi-omics assessment to determine potential off-targets on the transcriptome and methylome. We find that synergistic delivery of dCas9 effectors is highly selective for the target site. Our findings further elucidate a causal role for reduced DNA methylation associated with escape from X chromosome inactivation. Understanding the epigenetics associated with escape from X chromosome inactivation has potential for those suffering from X-linked disorders.


Subject(s)
Chromosomes, Human, X/chemistry , Epigenesis, Genetic , Promoter Regions, Genetic , Protein Serine-Threonine Kinases/genetics , RNA, Messenger/genetics , X Chromosome Inactivation , Alleles , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Catalytic Domain , Cell Line, Tumor , Chromosomes, Human, X/metabolism , CpG Islands , Gene Editing , Gene Silencing , Humans , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Neurons/cytology , Neurons/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , RNA, Guide, Kinetoplastida/genetics , RNA, Guide, Kinetoplastida/metabolism , RNA, Messenger/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism
2.
Front Mol Neurosci ; 14: 789913, 2021.
Article in English | MEDLINE | ID: mdl-35153670

ABSTRACT

Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.

SELECTION OF CITATIONS
SEARCH DETAIL