Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Biophys J ; 121(2): 336-346, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34864047

ABSTRACT

Monolayer epithelial cells interact constantly with the substrate they reside on and their surrounding neighbors. As such, the properties of epithelial cells are profoundly governed by the mechanical and molecular cues that arise from both the substrate and contiguous cell neighbors. Although both cell-substrate and cell-cell interactions have been studied individually, these results are difficult to apply to native confluent epithelia, in which both jointly regulate the cell phenotype. Specifically, it remains poorly understood about the intertwined contributions from intercellular adhesion and substrate stiffness on cell morphology and gene expression, two essential microenvironment properties. Here, by adjusting the substrate modulus and altering the intercellular adhesion within confluent kidney epithelia, we found that cell-substrate and cell-cell interactions can mask each other's influence. For example, we found that epithelial cells exhibit an elongated morphological phenotype only when the substrate modulus and intercellular adhesions are both reduced, whereas their motility can be upregulated by either reduction. These results illustrate that combinatorial changes of the physical microenvironment are required to alter cell morphology and gene expression.


Subject(s)
Cell Communication , Epithelial Cells , Cell Adhesion/physiology , Epithelium , Gene Expression
2.
Biophys J ; 121(18): 3358-3369, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36028999

ABSTRACT

The mechanical properties of tissues have profound impacts on a wide range of biological processes such as embryo development (1,2), wound healing (3-6), and disease progression (7). Specifically, the spatially varying moduli of cells largely influence the local tissue deformation and intercellular interaction. Despite the importance of characterizing such a heterogeneous mechanical property, it has remained difficult to measure the supracellular modulus field in live cell layers with a high-throughput and minimal perturbation. In this work, we developed a monolayer effective modulus measurement by integrating a custom cell stretcher, light microscopy, and AI-based inference. Our approach first quantifies the heterogeneous deformation of a slightly stretched cell layer and converts the measured strain fields into an effective modulus field using an AI inference. This method allowed us to directly visualize the effective modulus distribution of thousands of cells virtually instantly. We characterized the mean value, SD, and correlation length of the effective cell modulus for epithelial cells and fibroblasts, which are in agreement with previous results. We also observed a mild correlation between cell area and stiffness in jammed epithelia, suggesting the influence of cell modulus on packing. Overall, our reported experimental platform provides a valuable alternative cell mechanics measurement tool that can be integrated with microscopy-based characterizations.


Subject(s)
Epithelial Cells , Elastic Modulus , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL