Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Pediatr Surg ; 55(6): 1107-1112, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32164986

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) affects cell behavior, and vice versa. How ECM changes after small bowel resection (SBR) to support adaptive cellular processes has not been described. Here we characterize changes in ECM following SBR and integrate this with concomitant transcriptional perturbations. METHODS: A 50% proximal SBR or sham surgery was performed on mice. On postoperative day 7, ileal tissue was sequentially depleted of protein components to generate an ECM-enriched fraction. ECM was analyzed for protein composition using mass spectrometry with subsequent Ingenuity Pathway Analysis (IPA) to identify predicted pathways and upstream regulators. qPCR and RNA-sequencing (RNA-Seq) were performed to corroborate these predicted pathways. RESULTS: 3034 proteins were differentially regulated between sham and SBR, of which 95 were significant (P < 0.05). IPA analysis predicted PPARα agonism to be an upstream regulator of the observed proteomic changes (P < 0.001). qPCR and RNA-Seq with KEGG analysis confirmed significant engagement of the PPAR pathway (P < 0.05). CONCLUSION: Transcriptional signatures of adapting bowel predict subsequent ECM changes after SBR. How ECM communicates with surrounding cells to drive adaptation and vice versa merits further investigation. Our findings thus far suggest ECM supports tissue hyperplasia and altered metabolic demand following SBR.


Subject(s)
Adaptation, Physiological , Extracellular Matrix/physiology , Intestine, Small/physiology , Intestine, Small/surgery , Animals , Biomarkers/metabolism , Blotting, Western , Male , Mass Spectrometry , Mice , Mice, Inbred C57BL , Postoperative Period , Proteins/metabolism , Proteomics , Transcriptome
2.
Sci Rep ; 10(1): 3842, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32123209

ABSTRACT

The development and physiologic role of small intestine (SI) vasculature is poorly studied. This is partly due to a lack of targetable, organ-specific markers for in vivo studies of two critical tissue components: endothelium and stroma. This challenge is exacerbated by limitations of traditional cell culture techniques, which fail to recapitulate mechanobiologic stimuli known to affect vessel development. Here, we construct and characterize a 3D in vitro microfluidic model that supports the growth of patient-derived intestinal subepithelial myofibroblasts (ISEMFs) and endothelial cells (ECs) into perfused capillary networks. We report how ISEMF and EC-derived vasculature responds to physiologic parameters such as oxygen tension, cell density, growth factors, and pharmacotherapy with an antineoplastic agent (Erlotinib). Finally, we demonstrate effects of ISEMF and EC co-culture on patient-derived human intestinal epithelial cells (HIECs), and incorporate perfused vasculature into a gut-on-a-chip (GOC) model that includes HIECs. Overall, we demonstrate that ISEMFs possess angiogenic properties as evidenced by their ability to reliably, reproducibly, and quantifiably facilitate development of perfused vasculature in a microfluidic system. We furthermore demonstrate the feasibility of including perfused vasculature, including ISEMFs, as critical components of a novel, patient-derived, GOC system with translational relevance as a platform for precision and personalized medicine research.


Subject(s)
Capillaries/growth & development , Coculture Techniques/instrumentation , Intestine, Small/cytology , Lab-On-A-Chip Devices , Myofibroblasts/cytology , Humans , Myofibroblasts/metabolism , Oxygen/metabolism , Perfusion
3.
Cell Mol Gastroenterol Hepatol ; 8(3): 407-426, 2019.
Article in English | MEDLINE | ID: mdl-31195149

ABSTRACT

BACKGROUND & AIMS: The small intestine (SI) displays regionality in nutrient and immunological function. Following SI tissue loss (as occurs in short gut syndrome, or SGS), remaining SI must compensate, or "adapt"; the capacity of SI epithelium to reprogram its regional identity has not been described. Here, we apply single-cell resolution analyses to characterize molecular changes underpinning adaptation to SGS. METHODS: Single-cell RNA sequencing was performed on epithelial cells isolated from distal SI of mice following 50% proximal small bowel resection (SBR) vs sham surgery. Single-cell profiles were clustered based on transcriptional similarity, reconstructing differentiation events from intestinal stem cells (ISCs) through to mature enterocytes. An unsupervised computational approach to score cell identity was used to quantify changes in regional (proximal vs distal) SI identity, validated using immunofluorescence, immunohistochemistry, qPCR, western blotting, and RNA-FISH. RESULTS: Uniform Manifold Approximation and Projection-based clustering and visualization revealed differentiation trajectories from ISCs to mature enterocytes in sham and SBR. Cell identity scoring demonstrated segregation of enterocytes by regional SI identity: SBR enterocytes assumed more mature proximal identities. This was associated with significant upregulation of lipid metabolism and oxidative stress gene expression, which was validated via orthogonal analyses. Observed upstream transcriptional changes suggest retinoid metabolism and proximal transcription factor Creb3l3 drive proximalization of cell identity in response to SBR. CONCLUSIONS: Adaptation to proximal SBR involves regional reprogramming of ileal enterocytes toward a proximal identity. Interventions bolstering the endogenous reprogramming capacity of SI enterocytes-conceivably by engaging the retinoid metabolism pathway-merit further investigation, as they may increase enteral feeding tolerance, and obviate intestinal failure, in SGS.


Subject(s)
Gene Expression Profiling/methods , Gene Regulatory Networks , Intestine, Small/surgery , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Animals , Cellular Reprogramming , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Enterocytes/chemistry , Enterocytes/cytology , Intestine, Small/chemistry , Lipid Metabolism , Male , Mice , Oxidative Stress , RNA, Small Nuclear/pharmacology , Unsupervised Machine Learning , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL