Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(34): e2108870119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969759

ABSTRACT

Tau protein aggregates are a major driver of neurodegeneration and behavioral impairments in tauopathies, including in Alzheimer's disease (AD). Apolipoprotein E4 (APOE4), the highest genetic risk factor for late-onset AD, has been shown to exacerbate tau hyperphosphorylation in mouse models. However, the exact mechanisms through which APOE4 induces tau hyperphosphorylation remains unknown. Here, we report that the astrocyte-secreted protein glypican-4 (GPC-4), which we identify as a binding partner of APOE4, drives tau hyperphosphorylation. We discovered that first, GPC-4 preferentially interacts with APOE4 in comparison to APOE2, considered to be a protective allele to AD, and second, that postmortem APOE4-carrying AD brains highly express GPC-4 in neurotoxic astrocytes. Furthermore, the astrocyte-secreted GPC-4 induced both tau accumulation and propagation in vitro. CRISPR/dCas9-mediated activation of GPC-4 in a tauopathy mouse model robustly induced tau hyperphosphorylation. In the absence of GPC4, APOE4-induced tau hyperphosphorylation was largely diminished using in vitro tau fluorescence resonance energy transfer-biosensor cells, in human-induced pluripotent stem cell-derived astrocytes and in an in vivo mouse model. We further show that APOE4-mediated surface trafficking of APOE receptor low-density lipoprotein receptor-related protein 1 through GPC-4 can be a gateway to tau spreading. Collectively, these data support that APOE4-induced tau hyperphosphorylation is directly mediated by GPC-4.


Subject(s)
Alzheimer Disease , Astrocytes , Glypicans , tau Proteins , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Animals , Apolipoprotein E2/genetics , Apolipoprotein E4/genetics , Apolipoprotein E4/metabolism , Astrocytes/metabolism , Disease Models, Animal , Glypicans/metabolism , Humans , Mice , Mice, Transgenic , Phosphorylation , Tauopathies/metabolism , Tauopathies/physiopathology , tau Proteins/metabolism
2.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33741601

ABSTRACT

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aß and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aß production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aß on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aged , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Humans , Neurons/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL