Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 108(9): 1551-1557, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34329581

ABSTRACT

Clinical validity assessments of gene-disease associations underpin analysis and reporting in diagnostic genomics, and yet wide variability exists in practice, particularly in use of these assessments for virtual gene panel design and maintenance. Harmonization efforts are hampered by the lack of agreed terminology, agreed gene curation standards, and platforms that can be used to identify and resolve discrepancies at scale. We undertook a systematic comparison of the content of 80 virtual gene panels used in two healthcare systems by multiple diagnostic providers in the United Kingdom and Australia. The process was enabled by a shared curation platform, PanelApp, and resulted in the identification and review of 2,144 discordant gene ratings, demonstrating the utility of sharing structured gene-disease validity assessments and collaborative discordance resolution in establishing national and international consensus.


Subject(s)
Consensus , Data Curation/standards , Genetic Diseases, Inborn/genetics , Genomics/standards , Molecular Sequence Annotation/standards , Australia , Biomarkers/metabolism , Data Curation/methods , Delivery of Health Care , Gene Expression , Gene Ontology , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/pathology , Genomics/methods , Humans , Mobile Applications/supply & distribution , Terminology as Topic , United Kingdom
2.
Hum Mol Genet ; 29(3): 353-368, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31696230

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disorder caused by mutations in the DMD gene that leads to the absence or severe reduction of dystrophin protein in muscle. The mdx mouse, also dystrophin deficient, is the model most widely used to study the pathology and test potential therapies, but the phenotype is milder than human DMD. This limits the magnitude and range of histological damage parameters and molecular changes that can be measured in pre-clinical drug testing. We used 3 weeks of voluntary wheel running to exacerbate the mdx phenotype. In mdx mice, voluntary exercise increased the amount of damaged necrotic tissue and macrophage infiltration. Global gene expression profiling revealed that exercise induced additional and larger gene expression changes in mdx mice and the pathways most impacted by exercise were all related to immune function or cell-extracellular matrix (ECM) interactions. When we compared the matrisome and inflammation genes that were dysregulated in mdx with those commonly differentially expressed in DMD, we found the exercised mdx molecular signature more closely resembled that of DMD. These gene expression changes in the exercised mdx model thus provide more scope to assess the effects of pre-clinical treatments. Our gene profiling comparisons also highlighted upregulation of ECM proteins involved in innate immunity pathways, proteases that can release them, downstream receptors and signaling molecules in exercised mdx and DMD, suggesting that the ECM could be a major source of pro-inflammatory molecules that trigger and maintain the immune response in dystrophic muscle.


Subject(s)
Extracellular Matrix Proteins/metabolism , Gene Expression Regulation , Immunity/immunology , Inflammation/pathology , Motor Activity , Muscle, Skeletal/pathology , Muscular Dystrophy, Duchenne/pathology , Animals , Extracellular Matrix Proteins/genetics , Gene Expression Profiling , Humans , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Male , Mice , Mice, Inbred mdx , Muscle, Skeletal/immunology , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/immunology , Muscular Dystrophy, Duchenne/metabolism
3.
Nucleic Acids Res ; 47(8): e46, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30793194

ABSTRACT

Systematic variation in the methylation of cytosines at CpG sites plays a critical role in early development of humans and other mammals. Of particular interest are regions of differential methylation between parental alleles, as these often dictate monoallelic gene expression, resulting in parent of origin specific control of the embryonic transcriptome and subsequent development, in a phenomenon known as genomic imprinting. Using long-read nanopore sequencing we show that, with an average genomic coverage of ∼10, it is possible to determine both the level of methylation of CpG sites and the haplotype from which each read arises. The long-read property is exploited to characterize, using novel methods, both methylation and haplotype for reads that have reduced basecalling precision compared to Sanger sequencing. We validate the analysis both through comparison of nanopore-derived methylation patterns with those from Reduced Representation Bisulfite Sequencing data and through comparison with previously reported data. Our analysis successfully identifies known imprinting control regions (ICRs) as well as some novel differentially methylated regions which, due to their proximity to hitherto unknown monoallelically expressed genes, may represent new ICRs.


Subject(s)
Genome , Genomic Imprinting , Genotyping Techniques , Haplotypes , Sequence Analysis, DNA/statistics & numerical data , Alleles , Animals , Chromosome Mapping , CpG Islands , DNA Methylation , Embryo, Mammalian/chemistry , Embryo, Mammalian/metabolism , Female , High-Throughput Nucleotide Sequencing , Male , Mice , Placenta/chemistry , Placenta/metabolism , Pregnancy
4.
BMC Med ; 18(1): 145, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32438913

ABSTRACT

BACKGROUND: Fetuses affected by placental insufficiency do not receive adequate nutrients and oxygenation, become growth restricted and acidemic, and can demise. Preterm fetal growth restriction is a severe form of placental insufficiency with a high risk of stillbirth. We set out to identify maternal circulating mRNA transcripts that are differentially expressed in preterm pregnancies complicated by very severe placental insufficiency, in utero fetal acidemia, and are at very high risk of stillbirth. METHODS: We performed a cohort study across six hospitals in Australia and New Zealand, prospectively collecting blood from 128 pregnancies complicated by preterm fetal growth restriction (delivery < 34 weeks' gestation) and 42 controls. RNA-sequencing was done on all samples to discover circulating mRNAs associated with preterm fetal growth restriction and fetal acidemia in utero. We used RT-PCR to validate the associations between five lead candidate biomarkers of placental insufficiency in an independent cohort from Europe (46 with preterm fetal growth restriction) and in a third cohort of pregnancies ending in stillbirth. RESULTS: In the Australia and New Zealand cohort, we identified five mRNAs that were highly differentially expressed among pregnancies with preterm fetal growth restriction: NR4A2, EMP1, PGM5, SKIL, and UGT2B1. Combining three yielded an area under the receiver operative curve (AUC) of 0.95. Circulating NR4A2 and RCBTB2 in the maternal blood were dysregulated in the presence of fetal acidemia in utero. We validated the association between preterm fetal growth restriction and circulating EMP1, NR4A2, and PGM5 mRNA in a cohort from Europe. Combining EMP1 and PGM5 identified fetal growth restriction with an AUC of 0.92. Several of these genes were differentially expressed in the presence of ultrasound parameters that reflect placental insufficiency. Circulating NR4A2, EMP1, and RCBTB2 mRNA were differentially regulated in another cohort destined for stillbirth, compared to ongoing pregnancies. EMP1 mRNA appeared to have the most consistent association with placental insufficiency in all cohorts. CONCLUSIONS: Measuring circulating mRNA offers potential as a test to identify pregnancies with severe placental insufficiency and at very high risk of stillbirth. Circulating mRNA EMP1 may be promising as a biomarker of severe placental insufficiency.


Subject(s)
Placental Insufficiency/genetics , RNA, Messenger/metabolism , Stillbirth/genetics , Adult , Cohort Studies , Female , Humans , Infant, Newborn , Placental Insufficiency/blood , Pregnancy , Risk Factors
5.
Diabetologia ; 61(11): 2398-2411, 2018 11.
Article in English | MEDLINE | ID: mdl-30091044

ABSTRACT

AIMS/HYPOTHESIS: An adverse intrauterine environment can result in permanent changes in the physiology of the offspring and predispose to diseases in adulthood. One such exposure, gestational diabetes mellitus (GDM), has been linked to development of metabolic disorders and cardiovascular disease in offspring. Epigenetic variation, including DNA methylation, is recognised as a leading mechanism underpinning fetal programming and we hypothesised that this plays a key role in fetoplacental endothelial dysfunction following exposure to GDM. Thus, we conducted a pilot epigenetic study to analyse concordant DNA methylation and gene expression changes in GDM-exposed fetoplacental endothelial cells. METHODS: Genome-wide methylation analysis of primary fetoplacental arterial endothelial cells (AEC) and venous endothelial cells (VEC) from healthy pregnancies and GDM-complicated pregnancies in parallel with transcriptome analysis identified methylation and expression changes. Most-affected pathways and functions were identified by Ingenuity Pathway Analysis and validated using functional assays. RESULTS: Transcriptome and methylation analyses identified variation in gene expression linked to GDM-associated DNA methylation in 408 genes in AEC and 159 genes in VEC, implying a direct functional link. Pathway analysis found that genes altered by exposure to GDM clustered to functions associated with 'cell morphology' and 'cellular movement' in healthy AEC and VEC. Further functional analysis demonstrated that GDM-exposed cells had altered actin organisation and barrier function. CONCLUSIONS/INTERPRETATION: Our data indicate that exposure to GDM programs atypical morphology and barrier function in fetoplacental endothelial cells by DNA methylation and gene expression change. The effects differ between AEC and VEC, indicating a stringent cell-specific sensitivity to adverse exposures associated with developmental programming in utero. DATA AVAILABILITY: DNA methylation and gene expression datasets generated and analysed during the current study are available at the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database ( http://www.ncbi.nlm.nih.gov/geo ) under accession numbers GSE106099 and GSE103552, respectively.


Subject(s)
Diabetes, Gestational/metabolism , Endothelial Cells/metabolism , Fetus/blood supply , Placenta/blood supply , DNA Methylation/genetics , Diabetes, Gestational/genetics , Epigenesis, Genetic/genetics , Female , Fetal Development/genetics , Humans , Pregnancy
6.
Genome Res ; 22(8): 1395-406, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22800725

ABSTRACT

Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation profiling of ∼20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Fetal Development/genetics , Genome, Human , Twins, Dizygotic/genetics , Twins, Monozygotic/genetics , Cells, Cultured , CpG Islands , Epigenomics/methods , Female , Fetal Growth Retardation/genetics , Genetic Drift , Gestational Age , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Infant, Low Birth Weight , Infant, Newborn , Inheritance Patterns , Male , Oligonucleotide Array Sequence Analysis , Organ Specificity , Phenotype , Placenta/cytology , Placenta/metabolism , Pregnancy , Regression Analysis , Stochastic Processes
7.
Mol Cell Proteomics ; 11(1): M111.014159, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21989018

ABSTRACT

Skeletal growth by endochondral ossification involves tightly coordinated chondrocyte differentiation that creates reserve, proliferating, prehypertrophic, and hypertrophic cartilage zones in the growth plate. Many human skeletal disorders result from mutations in cartilage extracellular matrix (ECM) components that compromise both ECM architecture and chondrocyte function. Understanding normal cartilage development, composition, and structure is therefore vital to unravel these disease mechanisms. To study this intricate process in vivo by proteomics, we analyzed mouse femoral head cartilage at developmental stages enriched in either immature chondrocytes or maturing/hypertrophic chondrocytes (post-natal days 3 and 21, respectively). Using LTQ-Orbitrap tandem mass spectrometry, we identified 703 cartilage proteins. Differentially abundant proteins (q < 0.01) included prototypic markers for both early and late chondrocyte differentiation (epiphycan and collagen X, respectively) and novel ECM and cell adhesion proteins with no previously described roles in cartilage development (tenascin X, vitrin, Urb, emilin-1, and the sushi repeat-containing proteins SRPX and SRPX2). Meta-analysis of cartilage development in vivo and an in vitro chondrocyte culture model (Wilson, R., Diseberg, A. F., Gordon, L., Zivkovic, S., Tatarczuch, L., Mackie, E. J., Gorman, J. J., and Bateman, J. F. (2010) Comprehensive profiling of cartilage extracellular matrix formation and maturation using sequential extraction and label-free quantitative proteomics. Mol. Cell. Proteomics 9, 1296-1313) identified components involved in both systems, such as Urb, and components with specific roles in vivo, including vitrin and CILP-2 (cartilage intermediate layer protein-2). Immunolocalization of Urb, vitrin, and CILP-2 indicated specific roles at different maturation stages. In addition to ECM-related changes, we provide the first biochemical evidence of changing endoplasmic reticulum function during cartilage development. Although the multifunctional chaperone BiP was not differentially expressed, enzymes and chaperones required specifically for collagen biosynthesis, such as the prolyl 3-hydroxylase 1, cartilage-associated protein, and peptidyl prolyl cis-trans isomerase B complex, were down-regulated during maturation. Conversely, the lumenal proteins calumenin, reticulocalbin-1, and reticulocalbin-2 were significantly increased, signifying a shift toward calcium binding functions. This first proteomic analysis of cartilage development in vivo reveals the breadth of protein expression changes during chondrocyte maturation and ECM remodeling in the mouse femoral head.


Subject(s)
Cartilage/metabolism , Chondrocytes/metabolism , Extracellular Matrix/metabolism , Animals , Cartilage/growth & development , Mice , Mice, Inbred C57BL , Proteome
8.
BMC Genomics ; 14: 475, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23855827

ABSTRACT

BACKGROUND: The endothelial compartment, comprising arterial, venous and lymphatic cell types, is established prenatally in association with rapid phenotypic and functional changes. The molecular mechanisms underpinning this process in utero have yet to be fully elucidated. The aim of this study was to investigate the potential for DNA methylation to act as a driver of the specific gene expression profiles of arterial and venous endothelial cells. RESULTS: Placenta-derived venous and arterial endothelial cells were collected at birth prior to culturing. DNA methylation was measured at >450,000 CpG sites in parallel with expression measurements taken from 25,000 annotated genes. A consistent set of genomic loci was found to show coordinate differential methylation between the arterial and venous cell types. This included many loci previously not investigated in relation to endothelial function. An inverse relationship was observed between gene expression and promoter methylation levels for a limited subset of genes implicated in endothelial function, including NOS3, encoding endothelial Nitric Oxide Synthase. CONCLUSION: Endothelial cells derived from the placental vasculature at birth contain widespread methylation of key regulatory genes. These are candidates involved in the specification of different endothelial cell types and represent potential target genes for environmentally mediated epigenetic disruption in utero in association with cardiovascular disease risk later in life.


Subject(s)
Arteries/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Placenta/cytology , Promoter Regions, Genetic/genetics , Transcriptome , Veins/cytology , Epigenesis, Genetic , Female , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pregnancy
9.
BMC Cancer ; 13: 585, 2013 Dec 09.
Article in English | MEDLINE | ID: mdl-24321497

ABSTRACT

BACKGROUND: Desmoplastic small round cell tumor (DSRCT) is characterized by the presence of a fusion protein EWS/WT1, arising from the t (11;22) (p13;q12) translocation. Here we examine the oncogenic properties of two splice variants of EWS/WT1, EWS/WT1-KTS and EWS/WT1 + KTS. METHODS: We over-expressed both EWS/WT1 variants in murine embryonic fibroblasts (MEFs) of wild-type, p53+/- and p53-/- backgrounds and measured effects on cell-proliferation, anchorage-independent growth, clonogenicity after serum withdrawal, and sensitivity to cytotoxic drugs and gamma irradiation in comparison to control cells. We examined gene expression profiles in cells expressing EWS/WT1. Finally we validated our key findings in a small series of DSRCT. RESULTS: Neither isoform of EWS/WT1 was sufficient to transform wild-type MEFs however the oncogenic potential of both was unmasked by p53 loss. Expression of EWS/WT1 in MEFs lacking at least one allele of p53 enhanced cell-proliferation, clonogenic survival and anchorage-independent growth. EWS/WT1 expression in wild-type MEFs conferred resistance to cell-cycle arrest after irradiation and daunorubicin induced apoptosis. We show DSRCT commonly have nuclear localization of p53, and copy-number amplification of MDM2/MDMX. Expression of either isoform of EWS/WT1 induced characteristic mRNA expression profiles. Gene-set enrichment analysis demonstrated enrichment of WNT pathway signatures in MEFs expressing EWS/WT1 + KTS. Wnt-activation was validated in cell lines with over-expression of EWS/WT1 and in DSRCT. CONCLUSION: In conclusion, we show both isoforms of EWS/WT1 have oncogenic potential in MEFs with loss of p53. In addition we provide the first link between EWS/WT1 and Wnt-pathway signaling. These data provide novel insights into the function of the EWS/WT1 fusion protein which characterize DSRCT.


Subject(s)
Desmoplastic Small Round Cell Tumor/metabolism , Fibroblasts/metabolism , Oncogene Proteins, Fusion/physiology , Tumor Suppressor Protein p53/genetics , Animals , Apoptosis , Cell Cycle Checkpoints , Cell Cycle Proteins , Cell Proliferation , Cell Survival/drug effects , Cells, Cultured , DNA Copy Number Variations , Daunorubicin/pharmacology , Drug Resistance, Neoplasm , Humans , Mice , Mice, Transgenic , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Radiation Tolerance , Transcriptome , Tumor Suppressor Protein p53/deficiency , Wnt Signaling Pathway
10.
Twin Res Hum Genet ; 16(1): 13-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23171547

ABSTRACT

The Peri/postnatal Epigenetic Twins Study (PETS) is a longitudinal cohort of 250 pairs of Australian twins and their mothers, who were recruited mid-way through pregnancy from January 2007 to September 2009. The study is centered on the developmental origins of health and disease paradigm (DOHaD) in which an adverse intrauterine environment predisposes the individual to complex disease in later life by reducing growth in utero and adversely altering developmental plasticity. Data concerning diet and lifestyle were collected from mothers during pregnancy, and samples of plasma and serum taken at 28 weeks' gestation. We attended 75% of all births, at which time we collected multiple biological samples including placenta, cord blood, and neonatal cheek cells, the latter from 91% of pairs. Chorionicity was recorded and zygosity was determined by DNA testing where necessary. Approximately 40% of the twins are monozygotic, two-thirds of which are dichorionic. Twins were seen again at 18 months of age and repeat blood and cheek swabs taken where possible. Studies of gene expression and the epigenetic marks of DNA methylation have so far revealed that twins exhibit a wide range of epigenetic discordance at birth, that one-third of the epigenome changes significantly between birth and 18 months; shared (maternal) environment, genetic factors, and non-shared intrauterine environment contribute to an increasing proportion of epigenetic variation at birth, respectively, and affect tissues differently, and that within-pair birth weight discordance correlates with epigenetic discordance in genes associated with lipid metabolism, supporting an epigenetic mechanism for DOHaD.


Subject(s)
Epigenesis, Genetic , Fetal Growth Retardation/genetics , Life Style , Twins/genetics , DNA Methylation , Diet , Female , Gestational Age , Humans , Infant , Infant, Newborn , Longitudinal Studies , Pregnancy
11.
Hum Mol Genet ; 19(8): 1618-32, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20118148

ABSTRACT

The fragile X syndrome (FXS) is caused by silencing of the fragile X mental retardation gene (FMR1) and the absence of its product, fragile X mental retardation protein (FMRP), resulting from CpG island methylation associated with large CGG repeat expansions (more than 200) termed full mutation (FM). We have identified a number of novel epigenetic markers for FXS using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), naming the most informative fragile X-related epigenetic element 1 (FREE1) and 2 (FREE2). Methylation of both regions was correlated with that of the FMR1 CpG island detected using Southern blot (FREE1 R = 0.97; P < 0.00001, n = 23 and FREE2 R = 0.93; P < 0.00001, n = 23) and negatively correlated with lymphocyte expression of FMRP (FREE1 R = -0.62; P = 0.01, n = 15 and FREE2 R = -0.55; P = 0.03, n = 15) in blood of partially methylated 'high functioning' FM males. In blood of FM carrier females, methylation of both markers was inversely correlated with the FMR1 activation ratio (FREE1 R = -0.93; P < 0.0001, n = 12 and FREE2 R = -0.95; P < 0.0001, n = 9). In a sample set of 49 controls, 18 grey zone (GZ 40-54 repeats), 22 premutation (PM 55-170 repeats) and 22 (affected) FXS subjects, the FREE1 methylation pattern was consistent between blood and chorionic villi as a marker of methylated FM alleles and could be used to differentiate FXS males and females from controls, as well as from carriers of GZ/PM alleles, but not between GZ and PM alleles and controls. Considering its high-throughput and specificity for pathogenic FM alleles, low cost and minimal DNA requirements, FREE MALDI-TOF MS offers a unique tool in FXS diagnostics and newborn population screening.


Subject(s)
DNA Methylation , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Transcriptional Activation , Aged , Alleles , Base Sequence , Cell Line , CpG Islands , Female , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/metabolism , Humans , Male , Middle Aged , Molecular Sequence Data
12.
Blood ; 115(2): 344-52, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19965665

ABSTRACT

Loss of p53-dependent apoptosis contributes to the development of hematologic malignancies and failure to respond to treatment. Proapoptotic Bcl-2 family member Puma is essential for apoptosis in HoxB8-immortalized interleukin-3 (IL-3)-dependent myeloid cell lines (FDM cells) provoked by IL-3 deprivation. p53 and FoxO3a can transcriptionally regulate Puma. To investigate which transcriptional regulator is responsible for IL-3 deprivation-induced Puma expression and apoptosis, we generated wild-type (WT), p53(-/-), and FoxO3a(-/-) FDM cells and found that p53(-/-) but not FoxO3a(-/-) cells were protected against IL-3 withdrawal. Loss of p21(cip/waf), which is critical for p53-mediated cell-cycle arrest, afforded no protection against IL-3 deprivation. A survival advantage was also observed in untransformed p53(-/-) hematopoietic progenitor cells cultured in the presence or absence of cytokines. In response to IL-3 deprivation, increased Puma protein levels in p53(-/-) cells were substantially delayed compared with WT cells. Increased p53 transcriptional activity was detected after cytokine deprivation. This was substantially less than that induced by DNA damage and associated not with increased p53 protein levels but with loss of the p53 regulator, MDM2. Thus, we conclude that p53 protein is activated after IL-3 deprivation by loss of MDM2. Activated p53 transcriptionally up-regulates Puma, which initiates apoptosis.


Subject(s)
Apoptosis Regulatory Proteins/biosynthesis , Apoptosis , Interleukin-3/metabolism , Myeloid Progenitor Cells/metabolism , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/biosynthesis , Up-Regulation , Animals , Apoptosis Regulatory Proteins/genetics , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage/drug effects , DNA Damage/genetics , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Deletion , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interleukin-3/pharmacology , Mice , Myeloid Progenitor Cells/cytology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Time Factors , Transcription, Genetic/drug effects , Transcription, Genetic/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Proteins/genetics
13.
Mol Cell Proteomics ; 9(6): 1296-313, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20190199

ABSTRACT

Articular cartilage is indispensable for joint function but has limited capacity for self-repair. Engineering of neocartilage in vitro is therefore a major target for autologous cartilage repair in arthritis. Previous analysis of neocartilage has targeted cellular organization and specific molecular components. However, the complexity of extracellular matrix (ECM) development in neocartilage has not been investigated by proteomics. To redress this, we developed a mouse neocartilage culture system that produces a cartilaginous ECM. Differential analysis of the tissue proteome of 3-week neocartilage and 3-day postnatal mouse cartilage using solubility-based protein fractionation targeted components involved in neocartilage development, including ECM maturation. Initially, SDS-PAGE analysis of sequential extracts revealed the transition in protein solubility from a high proportion of readily soluble (NaCl-extracted) proteins in juvenile cartilage to a high proportion of poorly soluble (guanidine hydrochloride-extracted) proteins in neocartilage. Label-free quantitative mass spectrometry (LTQ-Orbitrap) and statistical analysis were then used to filter three significant protein groups: proteins enriched according to extraction condition, proteins differentially abundant between juvenile cartilage and neocartilage, and proteins with differential solubility properties between the two tissue types. Classification of proteins differentially abundant between NaCl and guanidine hydrochloride extracts (n = 403) using bioinformatics revealed effective partitioning of readily soluble components from subunits of larger protein complexes. Proteins significantly enriched in neocartilage (n = 78) included proteins previously not reported or with unknown function in cartilage (integrin-binding protein DEL1; coiled-coil domain-containing protein 80; emilin-1 and pigment epithelium derived factor). Proteins with differential extractability between juvenile cartilage and neocartilage included ECM components (nidogen-2, perlecan, collagen VI, matrilin-3, tenascin and thrombospondin-1), and the relationship between protein extractability and ECM ultrastructural organization was supported by electron microscopy. Additionally, one guanidine extract-specific neocartilage protein, protease nexin-1, was confirmed by immunohistochemistry as a novel component of developing articular cartilage in vivo. The extraction profile and matrix-associated immunostaining implicates protease nexin-1 in cartilage development in vitro and in vivo.


Subject(s)
Cartilage/metabolism , Extracellular Matrix Proteins/isolation & purification , Extracellular Matrix/metabolism , Proteomics/methods , Aging/metabolism , Animals , Cartilage/ultrastructure , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Extracellular Matrix/ultrastructure , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/classification , Immunoblotting , Immunohistochemistry , Mass Spectrometry , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Protein Isoforms/metabolism , Protein Processing, Post-Translational , Solubility , Staining and Labeling , Tissue Culture Techniques
14.
G3 (Bethesda) ; 12(4)2022 04 04.
Article in English | MEDLINE | ID: mdl-35143647

ABSTRACT

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Subject(s)
Densovirinae , Penaeidae , Animals , Australia , Densovirinae/genetics , Genome, Viral , Penaeidae/genetics , Polymerase Chain Reaction
15.
BMC Genomics ; 12: 529, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-22032438

ABSTRACT

BACKGROUND: The human placenta facilitates the exchange of nutrients, gas and waste between the fetal and maternal circulations. It also protects the fetus from the maternal immune response. Due to its role at the feto-maternal interface, the placenta is subject to many environmental exposures that can potentially alter its epigenetic profile. Previous studies have reported gene expression differences in placenta over gestation, as well as inter-individual variation in expression of some genes. However, the factors contributing to this variation in gene expression remain poorly understood. RESULTS: In this study, we performed a genome-wide DNA methylation analysis of gene promoters in placenta tissue from three pregnancy trimesters. We identified large-scale differences in DNA methylation levels between first, second and third trimesters, with an overall progressive increase in average methylation from first to third trimester. The most differentially methylated genes included many immune regulators, reflecting the change in placental immuno-modulation as pregnancy progresses. We also detected increased inter-individual variation in the third trimester relative to first and second, supporting an accumulation of environmentally induced (or stochastic) changes in DNA methylation pattern. These highly variable genes were enriched for those involved in amino acid and other metabolic pathways, potentially reflecting the adaptation of the human placenta to different environments. CONCLUSIONS: The identification of cellular pathways subject to drift in response to environmental influences provide a basis for future studies examining the role of specific environmental factors on DNA methylation pattern and placenta-associated adverse pregnancy outcomes.


Subject(s)
DNA Methylation , Environment , Gestational Age , Placenta/metabolism , Cluster Analysis , CpG Islands , Epigenesis, Genetic , Female , Gene Expression Regulation , Genome, Human , Humans , Pregnancy , Pregnancy Trimester, First , Pregnancy Trimester, Second , Pregnancy Trimester, Third , Promoter Regions, Genetic , Stochastic Processes
16.
Mol Hum Reprod ; 17(6): 344-53, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21289002

ABSTRACT

Difficulties associated with long-term culture of primary trophoblasts have proven to be a major hurdle in their functional characterization. In order to circumvent this issue, several model cell lines have been established over many years using a variety of different approaches. Due to their differing origins, gene expression profiles and behaviour in vitro, different model lines have been utilized to investigate specific aspects of trophoblast biology. However, generally speaking, the molecular mechanisms underlying functional differences remain unclear. In this study, we profiled genome-scale DNA methylation in primary first trimester trophoblast cells and seven commonly used trophoblast-derived cell lines in an attempt to identify functional pathways differentially regulated by epigenetic modification in these cells. We identified a general increase in DNA promoter methylation levels in four choriocarcinoma (CCA)-derived lines and transformed HTR-8/SVneo cells, including hypermethylation of several genes regularly seen in human cancers, while other differences in methylation were noted in genes linked to immune responsiveness, cell morphology, development and migration across the different cell populations. Interestingly, CCA-derived lines show an overall methylation profile more similar to unrelated solid cancers than to untransformed trophoblasts, highlighting the role of aberrant DNA methylation in CCA development and/or long-term culturing. Comparison of DNA methylation and gene expression in CCA lines and cytotrophoblasts revealed a significant contribution of DNA methylation to overall expression profile. These data highlight the variability in epigenetic state between primary trophoblasts and cell models in pathways underpinning a wide range of cell functions, providing valuable candidate pathways for future functional investigation in different cell populations. This study also confirms the need for caution in the interpretation of data generated from manipulation of such pathways in vitro.


Subject(s)
Choriocarcinoma , Epigenomics , Gene Expression Regulation, Neoplastic , Trophoblasts/metabolism , Uterine Neoplasms/genetics , Uterine Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , DNA Methylation , Female , Gene Expression Profiling , Genetic Variation , Humans , Oligonucleotide Array Sequence Analysis , Organ Specificity , Pregnancy , Pregnancy Trimester, First , Promoter Regions, Genetic , Trophoblasts/pathology , Uterine Neoplasms/embryology , Uterine Neoplasms/metabolism
17.
BMC Clin Pathol ; 9: 5, 2009 Jun 09.
Article in English | MEDLINE | ID: mdl-19505339

ABSTRACT

BACKGROUND: Elevated levels of FMR1 mRNA in blood have been implicated in RNA toxicity associated with a number of clinical conditions. Due to the extensive inter-sample variation in the time lapse between the blood collection and RNA extraction in clinical practice, the resulting variation in mRNA quality significantly confounds mRNA analysis by real-time PCR. METHODS: Here, we developed an improved method to normalize for mRNA degradation in a sample set with large variation in rRNA quality, without sample omission. Initially, RNA samples were artificially degraded, and analyzed using capillary electrophoresis and real-time PCR standard curve method, with the aim of defining the best predictors of total RNA and mRNA degradation. RESULTS: We found that: (i) the 28S:18S ratio and RNA quality indicator (RQI) were good predictors of severe total RNA degradation, however, the greatest changes in the quantity of different mRNAs (FMR1, DNMT1, GUS, B2M and GAPDH) occurred during the early to moderate stages of degradation; (ii) chromatographic features for the 18S, 28S and the inter-peak region were the most reliable predictors of total RNA degradation, however their use for target gene normalization was inferior to internal control genes, of which GUS was the most appropriate. Using GUS for normalization, we examined in the whole blood the relationship between the FMR1 mRNA and CGG expansion in a non-coding portion of this gene, in a sample set (n = 30) with the large variation in rRNA quality. By combining FMR1 3' and 5' mRNA analyses the confounding impact of mRNA degradation on the correlation between FMR1 expression and CGG size was minimized, and the biological significance increased from p = 0.046 for the 5' FMR1 assay, to p = 0.018 for the combined FMR1 3' and 5' mRNA analysis. CONCLUSION: Our observations demonstrate that, through the use of an appropriate internal control and the direct analysis of multiple sites of target mRNA, samples that do not conform to the conventional rRNA criteria can still be utilized to obtain biologically/clinically relevant data. Although, this strategy clearly has application for improved assessment of FMR1 mRNA toxicity in blood, it may also have more general implications for gene expression studies in fresh and archival tissues.

18.
Nutrients ; 10(8)2018 Aug 11.
Article in English | MEDLINE | ID: mdl-30103486

ABSTRACT

Reduced sunlight exposure has been associated with an increased incidence of Crohn's disease and ulcerative colitis. The effect of ultraviolet radiation (UVR) on the faecal microbiome and susceptibility to colitis has not been explored. C57Bl/6 female mice were fed three different vitamin D-containing diets for 24 days before half of the mice in each group were UV-irradiated (1 kJ/m²) for each of four days, followed by twice-weekly irradiation of shaved dorsal skin for 35 days. Faecal DNA was extracted and high-throughput sequencing of the 16S RNA gene performed. UV irradiation of skin was associated with a significant change in the beta-diversity of faeces compared to nonirradiated mice, independently of vitamin D. Specifically, members of phylum Firmicutes, including Coprococcus, were enriched, whereas members of phylum Bacteroidetes, such as Bacteroidales, were depleted. Expression of colonic CYP27B1 increased by four-fold and IL1ß decreased by five-fold, suggesting a UVR-induced anti-inflammatory effect. UV-irradiated mice, however, were not protected against colitis induced by dextran sodium sulfate (DSS), although distinct faecal microbiome differences were documented post-DSS between UV-irradiated and nonirradiated mice. Thus, skin exposure to UVR alters the faecal microbiome, and further investigations to explore the implications of this in health and disease are warranted.


Subject(s)
Bacteria/drug effects , Bacteria/radiation effects , Cholecalciferol/administration & dosage , Colitis/microbiology , Feces/microbiology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/radiation effects , Skin/radiation effects , Ultraviolet Rays , Animal Feed , Animals , Bacteria/classification , Colitis/blood , Colitis/chemically induced , Colitis/pathology , Cytokines/blood , Dextran Sulfate , Disease Models, Animal , Female , Inflammation Mediators/blood , Mice, Inbred C57BL
19.
Sci Rep ; 8(1): 11511, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30065252

ABSTRACT

Vitamin D has been suggested as a possible adjunctive treatment to ameliorate disease severity in human inflammatory bowel disease. In this study, the effects of diets containing high (D++, 10,000 IU/kg), moderate (D+, 2,280 IU/kg) or no vitamin D (D-) on the severity of dextran sodium sulphate (DSS) colitis in female C57Bl/6 mice were investigated. The group on high dose vitamin D (D++) developed the most severe colitis as measured by blinded endoscopic (p < 0.001) and histologic (p < 0.05) assessment, weight loss (p < 0.001), drop in serum albumin (p = 0.05) and increased expression of colonic TNF-α (p < 0.05). Microbiota analysis of faecal DNA showed that the microbial composition of D++ control mice was more similar to that of DSS mice. Serum 25(OH)D3 levels reduced by 63% in the D++ group and 23% in the D+ group after 6 days of DSS treatment. Thus, high dose vitamin D supplementation is associated with a shift to a more inflammatory faecal microbiome and increased susceptibility to colitis, with a fall in circulating vitamin D occurring as a secondary event in response to the inflammatory process.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/drug effects , Vitamin D/pharmacology , Animals , Colitis/etiology , Colon/metabolism , Dextran Sulfate/pharmacology , Dietary Supplements , Disease Models, Animal , Female , Inflammatory Bowel Diseases/pathology , Mice , Mice, Inbred C57BL , Microbiota/drug effects , Vitamin D/metabolism
20.
Sci Rep ; 8(1): 13553, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30202061

ABSTRACT

The black tiger shrimp (Penaeus monodon) remains the second most widely cultured shrimp species globally; however, issues with disease and domestication have seen production levels stagnate over the past two decades. To help identify innovative solutions needed to resolve bottlenecks hampering the culture of this species, it is important to generate genetic and genomic resources. Towards this aim, we have produced the most complete publicly available P. monodon transcriptome database to date based on nine adult tissues and eight early life-history stages (BUSCO - Complete: 98.2% [Duplicated: 51.3%], Fragmented: 0.8%, Missing: 1.0%). The assembly resulted in 236,388 contigs, which were then further segregated into 99,203 adult tissue specific and 58,678 early life-history stage specific clusters. While annotation rates were low (approximately 30%), as is typical for a non-model organisms, annotated transcript clusters were successfully mapped to several hundred functional KEGG pathways. Transcripts were clustered into groups within tissues and early life-history stages, providing initial evidence for their roles in specific tissue functions, or developmental transitions. We expect the transcriptome to provide an essential resource to investigate the molecular basis of commercially relevant-significant traits in P. monodon and other shrimp species.


Subject(s)
Gene Expression Regulation, Developmental , Genome/genetics , Penaeidae/genetics , Transcriptome/genetics , Animals , Aquaculture , Gene Expression Profiling , Multigene Family/genetics , Quantitative Trait Loci/genetics , RNA, Long Noncoding/genetics
SELECTION OF CITATIONS
SEARCH DETAIL