Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 415
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 82(12): 2252-2266, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35714586

ABSTRACT

Although some long noncoding (lnc)RNAs are known since the 1950s, the past 25 years have uncovered myriad lncRNAs with diverse sequences, structures, and functions. The advent of high-throughput and sensitive technologies has further uncovered the vast heterogeneity of lncRNA-interacting molecules and patterns of expressed lncRNAs. We propose a unifying functional theme for the expansive family of lncRNAs. At an elementary level, the genomic program of gene expression is elicited via canonical transcription and post-transcriptional mRNA assembly, turnover, and translation. Building upon this regulation, an epigenomic program refines the basic genomic control by modifying chromatin architecture as well as DNA and RNA chemistry. Superimposed over the genomic and epigenomic programs, lncRNAs create an additional regulatory dimension: by interacting with the proteins and nucleic acids that regulate gene expression in the nucleus and cytoplasm, lncRNAs help establish robust, nimble, and specific transcriptional and post-transcriptional control. We describe our present understanding of lncRNA-coordinated control of protein programs and cell fate and discuss challenges and opportunities as we embark on the next 25 years of lncRNA discovery.


Subject(s)
RNA, Long Noncoding , Epigenomics , Gene Expression Regulation , Genomics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Messenger/genetics
2.
Nucleic Acids Res ; 52(2): 885-905, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38000373

ABSTRACT

RNA-binding proteins (RBPs) with intrinsically disordered regions (IDRs) are linked to multiple human disorders, but their mechanisms of action remain unclear. Here, we report that one such protein, Nocte, is essential for Drosophila eye development by regulating a critical gene expression cascade at translational level. Knockout of nocte in flies leads to lethality, and its eye-specific depletion impairs eye size and morphology. Nocte preferentially enhances translation of mRNAs with long upstream open reading frames (uORFs). One of the key Nocte targets, glass mRNA, encodes a transcription factor critical for differentiation of photoreceptor neurons and accessory cells, and re-expression of Glass largely rescued the eye defects caused by Nocte depletion. Mechanistically, Nocte counteracts long uORF-mediated translational suppression by promoting translation reinitiation downstream of the uORF. Nocte interacts with translation factors eIF3 and Rack1 through its BAT2 domain, and a Nocte mutant lacking this domain fails to promote translation of glass mRNA. Notably, de novo mutations of human orthologs of Nocte have been detected in schizophrenia patients. Our data suggest that Nocte family of proteins can promote translation reinitiation to overcome long uORFs-mediated translational suppression, and disruption of this function can lead to developmental defects and neurological disorders.


Subject(s)
Drosophila , RNA-Binding Proteins , Animals , Humans , 5' Untranslated Regions , Drosophila/genetics , Drosophila/metabolism , Open Reading Frames/genetics , Protein Biosynthesis/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Transcription Factors/metabolism
3.
Nucleic Acids Res ; 52(12): 7261-7278, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38721764

ABSTRACT

RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.


Subject(s)
Adenosine , Cell Survival , Cellular Senescence , Methyltransferases , RNA, Messenger , RNA-Binding Proteins , Humans , Cellular Senescence/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cell Survival/genetics , Apoptosis/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , DNA Damage
4.
Proc Natl Acad Sci U S A ; 120(43): e2219801120, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37862381

ABSTRACT

Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.


Subject(s)
Cellular Senescence , Extracellular Vesicles , Humans , Dipeptidyl Peptidase 4/genetics , Dipeptidyl Peptidase 4/metabolism , HeLa Cells , Extracellular Vesicles/metabolism , Aging
5.
Genes Dev ; 32(13-14): 909-914, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29967290

ABSTRACT

The senescence-associated secretory phenotype (SASP) is a major trait of senescent cells, but the molecular regulators of SASP factor secretion are poorly understood. Mass spectrometry analysis revealed that secretory carrier membrane protein 4 (SCAMP4) levels were strikingly elevated on the surface of senescent cells compared with proliferating cells. Interestingly, silencing SCAMP4 in senescent fibroblasts reduced the secretion of SASP factors, including interleukin 6 (IL6), IL8, growth differentiation factor 15 (GDF-15), C-X-C motif chemokine ligand 1 (CXCL1), and IL7, while, conversely, SCAMP4 overexpression in proliferating fibroblasts increased SASP factor secretion. Our results indicate that SCAMP4 accumulates on the surface of senescent cells, promotes SASP factor secretion, and critically enhances the SASP phenotype.


Subject(s)
Carrier Proteins/metabolism , Cellular Senescence/genetics , Fibroblasts/metabolism , Membrane Proteins/metabolism , Carrier Proteins/genetics , Cell Line , Cell Proliferation/physiology , Fibroblasts/cytology , Gene Silencing , Humans , Membrane Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Ubiquitin/metabolism
6.
Hum Mol Genet ; 32(5): 790-797, 2023 02 19.
Article in English | MEDLINE | ID: mdl-36136759

ABSTRACT

Few genome-wide association studies (GWAS) analyzing genetic regulation of morphological traits of white blood cells have been reported. We carried out a GWAS of 12 morphological traits in 869 individuals from the general population of Sardinia, Italy. These traits, included measures of cell volume, conductivity and light scatter in four white-cell populations (eosinophils, lymphocytes, monocytes, neutrophils). This analysis yielded seven statistically significant signals, four of which were novel (four novel, PRG2, P2RX3, two of CDK6). Five signals were replicated in the independent INTERVAL cohort of 11 822 individuals. The most interesting signal with large effect size on eosinophil scatter (P-value = 8.33 x 10-32, beta = -1.651, se = 0.1351) falls within the innate immunity cluster on chromosome 11, and is located in the PRG2 gene. Computational analyses revealed that a rare, Sardinian-specific PRG2:p.Ser148Pro mutation modifies PRG2 amino acid contacts and protein dynamics in a manner that could possibly explain the changes observed in eosinophil morphology. Our discoveries shed light on genetics of morphological traits. For the first time, we describe such large effect size on eosinophils morphology that is relatively frequent in Sardinian population.


Subject(s)
Eosinophils , Genome-Wide Association Study , Humans , Chromosomes, Human, Pair 11 , Polymorphism, Single Nucleotide , Immunity, Innate
7.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37154037

ABSTRACT

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Subject(s)
Peripheral Arterial Disease , Transcriptome , Humans , Aged , Proteomics , Muscle, Skeletal/metabolism , Ischemia/metabolism , Hypoxia/metabolism
8.
EMBO Rep ; 24(2): e54925, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36440604

ABSTRACT

Vault RNAs (vtRNAs) are small noncoding RNAs and highly expressed in many eukaryotes. Here, we identified vtRNA2-1 as a novel regulator of the intestinal barrier via interaction with RNA-binding protein HuR. Intestinal mucosal tissues from patients with inflammatory bowel diseases and from mice with colitis or sepsis express increased levels of vtRNAs relative to controls. Ectopically expressed vtRNA2-1 decreases the levels of intercellular junction (IJ) proteins claudin 1, occludin, and E-cadherin and causes intestinal epithelial barrier dysfunction in vitro, whereas vtRNA2-1 silencing promotes barrier function. Increased vtRNA2-1 also decreases IJs in intestinal organoid, inhibits epithelial renewal, and causes Paneth cell defects ex vivo. Elevating the levels of tissue vtRNA2-1 in the intestinal mucosa increases the vulnerability of the gut barrier to septic stress in mice. vtRNA2-1 interacts with HuR and prevents HuR binding to claudin 1 and occludin mRNAs, thus decreasing their translation. These results indicate that vtRNA2-1 impairs intestinal barrier function by repressing HuR-facilitated translation of claudin 1 and occludin.


Subject(s)
Colitis , MicroRNAs , Paneth Cells , Animals , Mice , Claudin-1/genetics , Claudin-1/metabolism , Colitis/genetics , Colitis/metabolism , Intestinal Mucosa/metabolism , Occludin/metabolism , MicroRNAs/metabolism
9.
PLoS Genet ; 18(11): e1010506, 2022 11.
Article in English | MEDLINE | ID: mdl-36441670

ABSTRACT

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.


Subject(s)
Shelterin Complex , Telomere , Animals , Humans , Mice , Longevity , Phenotype , Telomere/genetics , Telomere Shortening
10.
Genes Dev ; 31(15): 1529-1534, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28877934

ABSTRACT

Senescent cell accumulation in aging tissues is linked to age-associated diseases and declining function, prompting efforts to eliminate them. Mass spectrometry analysis revealed that DPP4 (dipeptidyl peptidase 4) was selectively expressed on the surface of senescent, but not proliferating, human diploid fibroblasts. Importantly, the differential presence of DPP4 allowed flow cytometry-mediated isolation of senescent cells using anti-DPP4 antibodies. Moreover, antibody-dependent cell-mediated cytotoxicity (ADCC) assays revealed that the cell surface DPP4 preferentially sensitized senescent, but not dividing, fibroblasts to cytotoxicity by natural killer cells. In sum, the selective expression of DPP4 on the surface of senescent cells enables their preferential elimination.


Subject(s)
Cellular Senescence/physiology , Dipeptidyl Peptidase 4/metabolism , Membrane Proteins/metabolism , Adult , Aged , Aged, 80 and over , Antibody-Dependent Cell Cytotoxicity , Cells, Cultured , Cyclin-Dependent Kinase Inhibitor p16/genetics , Diploidy , Fibroblasts/metabolism , Flow Cytometry , Humans , Killer Cells, Natural/metabolism , Lymphocyte Subsets/enzymology , Mass Spectrometry , RNA, Messenger/metabolism , RNA, Ribosomal/metabolism
11.
Mol Psychiatry ; 28(3): 1312-1326, 2023 03.
Article in English | MEDLINE | ID: mdl-36577843

ABSTRACT

We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aß1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Hydroxychloroquine/therapeutic use , Amyloid beta-Protein Precursor/genetics , Mice, Transgenic , Phenotype , Disease Models, Animal , Amyloid beta-Peptides/metabolism
12.
BMC Ophthalmol ; 24(1): 306, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044131

ABSTRACT

BACKGROUND: Usher syndrome (USH) encompasses a group of disorders characterized by congenital sensorineural hearing loss (SNHL) and retinitis pigmentosa (RP). We described the clinical findings, natural history, and molecular analyses of USH patients identified during a large-scale screening to identify quantitative traits related to ocular disorders in the SardiNIA project cohort. METHODS: We identified 3 USH-affected families out of a cohort of 6,148 healthy subjects. 9 subjects presented a pathological phenotype, with SNHL and RP. All patients and their family members underwent a complete ophthalmic examination including best-corrected visual acuity, slit-lamp biomicroscopy, fundoscopy, fundus autofluorescence, spectral-domain optical coherence tomography, and electrophysiological testing. Audiological evaluation was performed with a clinical audiometer. Genotyping was performed using several arrays integrated with whole genome sequence data providing approximately 22 million markers equally distributed for each subject analyzed. Molecular diagnostics focused on analysis of the following candidate genes: MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31, CLRN1, and PDZD7. RESULTS: A single missense causal variant in USH2A gene was identified in homozygous status in all patients and in heterozygous status in unaffected parents. The presence of multiple homozygous patients with the same phenotypic severity of the syndromic form suggests that the Sardinian USH phenotype is the result of a founder effect on a specific pathogenic variant related haplotype. The frequency of heterozygotes in general Sardinian population is 1.89. Additionally, to provide new insights into the structure of usherin and the pathological mechanisms caused by small pathogenic in-frame variants, like p.Pro3272Leu, molecular dynamics simulations of native and mutant protein-protein and protein-ligand complexes were performed that predicted a destabilization of the protein with a decrease in the free energy change. CONCLUSIONS: Our results suggest that our approach is effective for the genetic diagnosis of USH. Based on the heterozygous frequency, targeted screening of this variant in the general population and in families at risk or with familial USH can be suggested. This can lead to more accurate molecular diagnosis, better genetic counseling, and improved molecular epidemiology data that are critical for future intervention plans. TRIAL REGISTRATION: We did not perform any health-related interventions for the participants.


Subject(s)
Pedigree , Usher Syndromes , Humans , Usher Syndromes/genetics , Usher Syndromes/diagnosis , Italy/epidemiology , Male , Female , Adult , Middle Aged , Extracellular Matrix Proteins/genetics , DNA Mutational Analysis , Tomography, Optical Coherence , Phenotype , Founder Effect , Mutation, Missense , Electroretinography , Young Adult , Adolescent , Visual Acuity , Genetic Testing/methods
13.
Nucleic Acids Res ; 50(12): 7115-7133, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35736212

ABSTRACT

Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , MicroRNAs/genetics , Muscle Development/genetics
14.
Nucleic Acids Res ; 50(12): 7013-7033, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35748872

ABSTRACT

Topoisomerase 3ß (TOP3B) and TDRD3 form a dual-activity topoisomerase complex that interacts with FMRP and can change the topology of both DNA and RNA. Here, we investigated the post-transcriptional influence of TOP3B and associated proteins on mRNA translation and turnover. First, we discovered that in human HCT116 colon cancer cells, knock-out (KO) of TOP3B had similar effects on mRNA turnover and translation as did TDRD3-KO, while FMRP-KO resulted in rather distinct effects, indicating that TOP3B had stronger coordination with TDRD3 than FMRP in mRNA regulation. Second, we identified TOP3B-bound mRNAs in HCT116 cells; we found that while TOP3B did not directly influence the stability or translation of most TOP3B target mRNAs, it stabilized a subset of target mRNAs but had a more complex effect on translation-enhancing for some mRNAs whereas reducing for others. Interestingly, a point mutation that specifically disrupted TOP3B catalytic activity only partially recapitulated the effects of TOP3B-KO on mRNA stability and translation, suggesting that the impact of TOP3B on target mRNAs is partly linked to its ability to change topology of mRNAs. Collectively, our data suggest that TOP3B-TDRD3 can regulate mRNA translation and turnover by mechanisms that are dependent and independent of topoisomerase activity.


Subject(s)
Protein Biosynthesis , Proteins , Humans , RNA, Messenger/genetics
15.
Nucleic Acids Res ; 50(22): 13026-13044, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36533518

ABSTRACT

The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.


Subject(s)
Heterogeneous-Nuclear Ribonucleoprotein L , Muscle Development , Promoter Regions, Genetic , RNA, Long Noncoding , Transcription, Genetic , Humans , Heterogeneous-Nuclear Ribonucleoprotein L/genetics , Heterogeneous-Nuclear Ribonucleoprotein L/metabolism , Muscle Development/genetics , Muscle Fibers, Skeletal/metabolism , Myoblasts/cytology , Myoblasts/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Transcription, Genetic/genetics , Gene Silencing , Protein Transport/genetics
16.
BMC Biol ; 21(1): 127, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37237280

ABSTRACT

BACKGROUND: Circular RNA (circRNA) molecules, generated through non-canonical back-splicing of exon-exon junctions, have recently been implicated in diverse biological functions including transcriptional regulation and modulation of protein interactions. CircRNAs are emerging as a key component of the complex neural transcriptome implicated in brain development. However, the specific expression patterns and functions of circRNAs in human neuronal differentiation have not been explored. RESULTS: Using total RNA sequencing analysis, we identified expressed circRNAs during the differentiation of human neuroepithelial stem (NES) cells into developing neurons and discovered that many circRNAs originated from host genes associated with synaptic function. Interestingly, when assessing population data, exons giving rise to circRNAs in our dataset had a higher frequency of genetic variants. Additionally, screening for RNA-binding protein sites identified enrichment of Splicing Factor Proline and Glutamine Rich (SFPQ) motifs in increased circRNAs, several of which were reduced by SFPQ knockdown and enriched in SFPQ ribonucleoprotein complexes. CONCLUSIONS: Our study provides an in-depth characterisation of circRNAs in a human neuronal differentiation model and highlights SFPQ as both a regulator and binding partner of circRNAs elevated during neuronal maturation.


Subject(s)
RNA, Circular , RNA , Humans , RNA, Circular/genetics , RNA/genetics , RNA/metabolism , Gene Expression Regulation , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Cell Differentiation
17.
Genes Dev ; 30(10): 1224-39, 2016 05 15.
Article in English | MEDLINE | ID: mdl-27198227

ABSTRACT

Some mitochondrial long noncoding RNAs (lncRNAs) are encoded by nuclear DNA, but the mechanisms that mediate their transport to mitochondria are poorly characterized. Using affinity RNA pull-down followed by mass spectrometry analysis, we found two RNA-binding proteins (RBPs), HuR (human antigen R) and GRSF1 (G-rich RNA sequence-binding factor 1), that associated with the nuclear DNA-encoded lncRNA RMRP and mobilized it to mitochondria. In cultured human cells, HuR bound RMRP in the nucleus and mediated its CRM1 (chromosome region maintenance 1)-dependent export to the cytosol. After RMRP was imported into mitochondria, GRSF1 bound RMRP and increased its abundance in the matrix. Loss of GRSF1 lowered the mitochondrial levels of RMRP, in turn suppressing oxygen consumption rates and modestly reducing mitochondrial DNA replication priming. Our findings indicate that RBPs HuR and GRSF1 govern the cytoplasmic and mitochondrial localization of the lncRNA RMRP, which is encoded by nuclear DNA but has key functions in mitochondria.


Subject(s)
Cell Nucleus/metabolism , ELAV-Like Protein 1/metabolism , Mitochondria/metabolism , Poly(A)-Binding Proteins/metabolism , RNA, Long Noncoding/metabolism , Active Transport, Cell Nucleus , HEK293 Cells , HeLa Cells , Humans , Protein Binding , Protein Transport
18.
FASEB J ; 36(1): e22051, 2022 01.
Article in English | MEDLINE | ID: mdl-34861058

ABSTRACT

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia in humans. Genetic and genomic analyses have recently demonstrated that the homeobox transcription factor Pitx2 plays a fundamental role regulating expression of distinct growth factors, microRNAs and ion channels leading to morphological and molecular alterations that promote the onset of AF. Here we address the plausible contribution of long non-coding (lnc)RNAs within the Pitx2>Wnt>miRNA signaling pathway. In silico analyses of annotated lncRNAs in the vicinity of the Pitx2, Wnt8 and Wnt11 chromosomal loci identified five novel lncRNAs with differential expression during cardiac development. Importantly, three of them, Walaa, Walras, and Wallrd, are evolutionarily conserved in humans and displayed preferential atrial expression during embryogenesis. In addition, Walrad displayed moderate expression during embryogenesis but was more abundant in the right atrium. Walaa, Walras and Wallrd were distinctly regulated by Pitx2, Wnt8, and Wnt11, and Wallrd was severely elevated in conditional atrium-specific Pitx2-deficient mice. Furthermore, pro-arrhythmogenic and pro-hypertrophic substrate administration to primary cardiomyocyte cell cultures consistently modulate expression of these lncRNAs, supporting distinct modulatory roles of the AF cardiovascular risk factors in the regulation of these lncRNAs. Walras affinity pulldown assays revealed its association with distinct cytoplasmic and nuclear proteins previously involved in cardiac pathophysiology, while loss-of-function assays further support a pivotal role of this lncRNA in cytoskeletal organization. We propose that lncRNAs Walaa, Walras and Wallrd, distinctly regulated by Pitx2>Wnt>miRNA signaling and pro-arrhythmogenic and pro-hypertrophic factors, are implicated in atrial arrhythmogenesis, and Walras additionally in cardiomyocyte cytoarchitecture.


Subject(s)
Atrial Fibrillation/metabolism , Cytoskeleton/metabolism , Myocytes, Cardiac/metabolism , RNA, Long Noncoding/metabolism , Animals , Atrial Fibrillation/genetics , Cytoskeleton/genetics , Heart Atria/metabolism , Humans , Mice , Mice, Knockout , RNA, Long Noncoding/genetics
20.
Graefes Arch Clin Exp Ophthalmol ; 261(3): 691-698, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36264335

ABSTRACT

PURPOSE: To ascertain the prevalence and clinical and genetic features of age-related macular degeneration (AMD) in subjects living in the Lanusei valley, Central Sardinia, Italy, involved in a study on ageing (SardiNIA project). METHODS: A total of 814 volunteers aged ≥ 50 years, randomly selected from the SardiNIA project dataset, were included. A color fundus (CF) photograph of the 30° central retina of each eye was obtained and graded according to the Age-Related Eye Disease Study system. Life-style choices were investigated using standardized questionnaires. The concentrations of several inflammatory biomarkers (i.e., complement component, fibrinogen, and C-reactive protein) were measured. Polygenic risk score (PRS) was calculated and compared with results obtained from a European cohort. RESULTS: A total of 756 subjects had gradable CF photographs for AMD detection. In 91.3%, no signs of AMD were observed. The prevalence rates of early and late AMDs were 6.9% and 0.6%, respectively. A total of 85% of subjects were physically active; only 13.5% were current smokers. Low concentrations of complement component, fibrinogen, and C-reactive protein were found. We calculated the polygenic risk scores (PRS) using 40 AMD markers distributed on several candidate genes in Europeans and Sardinians. The mean PRS value was significantly lower in Sardinians than in the Europeans (0.21 vs. 0.248, respectively, p = 1.18 × 10-77). CONCLUSIONS: In our cohort, most subjects showed no sign of any AMD type and late AMD was a condition rarely observed. Results of genetic, biochemical, and life-style investigation support the hypothesis that Sardinia population may present of a peculiar background with a protective effect against AMD development.


Subject(s)
C-Reactive Protein , Macular Degeneration , Humans , Macular Degeneration/diagnosis , Macular Degeneration/epidemiology , Macular Degeneration/genetics , Risk Factors , Risk Assessment , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL