Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38139740

ABSTRACT

Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of a finite element resonator model, the parameters of the interdigital transducer (IDT) and the area of the dummy finger weighting are determined. The spurious waves are confined within the dummy finger area, whereas the main mode is less affected by this structure. To verify the suppression effect of the simulation, resonators with conventional and hexagonal weighted structures are fabricated using the micro-electromechanical systems (MEMS) process. After the S-parameter test of the prepared resonators, the hexagonal weighted resonators achieve a high level of spurious mode suppression. Their properties are superior to those of the conventional structure, with a higher Q value (10,406), a higher minimum return loss (25.7 dB), and a lower ratio of peak sidelobe (19%). This work provides a feasible solution for the design of SAW resonators to suppress spurious modes.

2.
Micromachines (Basel) ; 15(2)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38399007

ABSTRACT

Capacitive micromachined ultrasonic transducer (CMUT) has been widely studied due to its excellent resonance characteristics and array integration. This paper presents the first study of the CMUT electrostatic stiffness resonant accelerometer. To improve the sensitivity of the CMUT accelerometer, this paper innovatively proposes the CMUT ring-perforation membrane structure, which effectively improves the acceleration sensitivity by reducing the mechanical stiffness of the elastic membrane. The acceleration sensitivity is 10.9 (Hz/g) in the acceleration range of 0-20 g, which is 100% higher than that of the conventional CMUT structure. This research contributes to the acceleration measurement field of CMUT and can effectively contribute to the breakthrough of vibration acceleration monitoring technology in aerospace, medical equipment, and automotive electronics.

SELECTION OF CITATIONS
SEARCH DETAIL