Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nat Mater ; 23(3): 429-438, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38361041

ABSTRACT

Cancer cell glycocalyx is a major line of defence against immune surveillance. However, how specific physical properties of the glycocalyx are regulated on a molecular level, contribute to immune evasion and may be overcome through immunoengineering must be resolved. Here we report how cancer-associated mucins and their glycosylation contribute to the nanoscale material thickness of the glycocalyx and consequently modulate the functional interactions with cytotoxic immune cells. Natural-killer-cell-mediated cytotoxicity is inversely correlated with the glycocalyx thickness of the target cells. Changes in glycocalyx thickness of approximately 10 nm can alter the susceptibility to immune cell attack. Enhanced stimulation of natural killer and T cells through equipment with chimeric antigen receptors can improve the cytotoxicity against mucin-bearing target cells. Alternatively, cytotoxicity can be enhanced through engineering effector cells to display glycocalyx-editing enzymes, including mucinases and sialidases. Together, our results motivate the development of immunoengineering strategies that overcome the glycocalyx armour of cancer cells.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Glycocalyx/metabolism , Mucins/metabolism , Antineoplastic Agents/metabolism , Neoplasms/therapy
2.
Biotechnol Bioeng ; 116(5): 994-1005, 2019 05.
Article in English | MEDLINE | ID: mdl-30636317

ABSTRACT

Optimization of host-cell production systems with improved yield and production reliability is desired to meet the increasing demand for biologics with complex posttranslational modifications. Aggregation of suspension-adapted mammalian cells remains a significant problem that can limit the cellular density and per volume yield of bioreactors. Here, we propose a genetically encoded technology that directs the synthesis of antiadhesive and protective coatings on the cellular surface. Inspired by the natural ability of mucin glycoproteins to resist cellular adhesion and hydrate and protect cell and tissue surfaces, we genetically encode new cell-surface coatings through the fusion of engineered mucin domains to synthetic transmembrane anchors. Combined with appropriate expression systems, the mucin-coating technology directs the assembly of thick, highly hydrated barriers to strongly mitigate cell aggregation and protect cells in suspension against fluid shear stresses. The coating technology is demonstrated on suspension-adapted human 293-F cells, which resist clumping even in media formulations that otherwise would induce extreme cell aggregation and show improved performance over a commercially available anticlumping agent. The stable biopolymer coatings do not show deleterious effects on cell proliferation rate, efficiency of transient transfection with complementary DNAs, or recombinant protein expression. Overall, our mucin-coating technology and engineered cell lines have the potential to improve the single-cell growth and viability of suspended cells in bioreactors.


Subject(s)
Bioreactors , Cell Proliferation , Mucins , Cell Aggregation , Cell Count , Cell Line , Humans , Mucins/biosynthesis , Mucins/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
3.
ACS Sens ; 5(6): 1555-1566, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32337979

ABSTRACT

Precise pH measurements in the immediate environment of receptors is essential for elucidating the mechanisms through which local pH changes associated with diseased phenotypes manifest into aberrant receptor function. However, current pH sensors lack the ability to localize and target specific receptor molecules required to make these measurements. Herein we present the Litmus-body, our recombinant protein-based pH sensor, which through fusion to an anti-IgG nanobody is capable of piggybacking on IgG antibodies for molecular targeting to specific proteins on the cell surface. By normalizing a pH-dependent green fluorescent protein to a long Stokes shift red fluorophore or fluorescent protein, we readily report pH independent of sensor concentration using a single 488 nm excitation. Our Litmus-body showed excellent responsiveness in solution, with a greater than 50-fold change across the regime of physiological pH. The sensor was further validated for use on live cells and shown to be specific to the protein of interest. In complex with our Litmus-body, cetuximab therapeutic antibody retained its functionality in binding and inhibiting ligand interaction of its target epidermal growth factor receptor (EGFR), triggering receptor-mediated endocytosis that allowed tracking of local pH from the cell surface through the endocytic pathway.


Subject(s)
Endocytosis , Fluorescent Dyes , Cetuximab , Hydrogen-Ion Concentration , Ligands
SELECTION OF CITATIONS
SEARCH DETAIL