Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nature ; 604(7907): 749-756, 2022 04.
Article in English | MEDLINE | ID: mdl-35444283

ABSTRACT

Amplification of the CCNE1 locus on chromosome 19q12 is prevalent in multiple tumour types, particularly in high-grade serous ovarian cancer, uterine tumours and gastro-oesophageal cancers, where high cyclin E levels are associated with genome instability, whole-genome doubling and resistance to cytotoxic and targeted therapies1-4. To uncover therapeutic targets for tumours with CCNE1 amplification, we undertook genome-scale CRISPR-Cas9-based synthetic lethality screens in cellular models of CCNE1 amplification. Here we report that increasing CCNE1 dosage engenders a vulnerability to the inhibition of the PKMYT1 kinase, a negative regulator of CDK1. To inhibit PKMYT1, we developed RP-6306, an orally bioavailable and selective inhibitor that shows single-agent activity and durable tumour regressions when combined with gemcitabine in models of CCNE1 amplification. RP-6306 treatment causes unscheduled activation of CDK1 selectively in CCNE1-overexpressing cells, promoting early mitosis in cells undergoing DNA synthesis. CCNE1 overexpression disrupts CDK1 homeostasis at least in part through an early activation of the MMB-FOXM1 mitotic transcriptional program. We conclude that PKMYT1 inhibition is a promising therapeutic strategy for CCNE1-amplified cancers.


Subject(s)
Cyclin E , Membrane Proteins , Ovarian Neoplasms , Protein Serine-Threonine Kinases , Protein-Tyrosine Kinases , CDC2 Protein Kinase , Cyclin E/genetics , Female , Gene Amplification , Gene Expression Regulation, Neoplastic , Humans , Membrane Proteins/genetics , Neoplasms/genetics , Ovarian Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , Synthetic Lethal Mutations
2.
Nature ; 560(7716): 117-121, 2018 08.
Article in English | MEDLINE | ID: mdl-30022168

ABSTRACT

53BP1 is a chromatin-binding protein that regulates the repair of DNA double-strand breaks by suppressing the nucleolytic resection of DNA termini1,2. This function of 53BP1 requires interactions with PTIP3 and RIF14-9, the latter of which recruits REV7 (also known as MAD2L2) to break sites10,11. How 53BP1-pathway proteins shield DNA ends is currently unknown, but there are two models that provide the best potential explanation of their action. In one model the 53BP1 complex strengthens the nucleosomal barrier to end-resection nucleases12,13, and in the other 53BP1 recruits effector proteins with end-protection activity. Here we identify a 53BP1 effector complex, shieldin, that includes C20orf196 (also known as SHLD1), FAM35A (SHLD2), CTC-534A2.2 (SHLD3) and REV7. Shieldin localizes to double-strand-break sites in a 53BP1- and RIF1-dependent manner, and its SHLD2 subunit binds to single-stranded DNA via OB-fold domains that are analogous to those of RPA1 and POT1. Loss of shieldin impairs non-homologous end-joining, leads to defective immunoglobulin class switching and causes hyper-resection. Mutations in genes that encode shieldin subunits also cause resistance to poly(ADP-ribose) polymerase inhibition in BRCA1-deficient cells and tumours, owing to restoration of homologous recombination. Finally, we show that binding of single-stranded DNA by SHLD2 is critical for shieldin function, consistent with a model in which shieldin protects DNA ends to mediate 53BP1-dependent DNA repair.


Subject(s)
DNA Repair , Multiprotein Complexes/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Animals , CRISPR-Cas Systems , Cell Line , DNA Breaks, Double-Stranded , DNA, Single-Stranded/genetics , Female , Genes, BRCA1 , Humans , Immunoglobulin Class Switching/genetics , Mice , Models, Biological , Multiprotein Complexes/chemistry , Multiprotein Complexes/deficiency , Multiprotein Complexes/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Telomere-Binding Proteins/metabolism , Tumor Suppressor Protein p53/deficiency
3.
Nat Chem Biol ; 16(11): 1170-1178, 2020 11.
Article in English | MEDLINE | ID: mdl-32778845

ABSTRACT

The RAF family kinases function in the RAS-ERK pathway to transmit signals from activated RAS to the downstream kinases MEK and ERK. This pathway regulates cell proliferation, differentiation and survival, enabling mutations in RAS and RAF to act as potent drivers of human cancers. Drugs targeting the prevalent oncogenic mutant BRAF(V600E) have shown great efficacy in the clinic, but long-term effectiveness is limited by resistance mechanisms that often exploit the dimerization-dependent process by which RAF kinases are activated. Here, we investigated a proteolysis-targeting chimera (PROTAC) approach to BRAF inhibition. The most effective PROTAC, termed P4B, displayed superior specificity and inhibitory properties relative to non-PROTAC controls in BRAF(V600E) cell lines. In addition, P4B displayed utility in cell lines harboring alternative BRAF mutations that impart resistance to conventional BRAF inhibitors. This work provides a proof of concept for a substitute to conventional chemical inhibition to therapeutically constrain oncogenic BRAF.


Subject(s)
Antineoplastic Agents , Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Thalidomide , Ubiquitin , Animals , Female , Humans , Mice , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Resistance, Neoplasm , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases/metabolism , Models, Molecular , Molecular Structure , Molecular Targeted Therapy , Mutation , Phosphorylation/drug effects , Protein Binding , Protein Kinase Inhibitors/pharmacology , Proteolysis , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Signal Transduction , Structure-Activity Relationship , Thalidomide/analogs & derivatives , Thalidomide/chemistry , Ubiquitin/chemistry
4.
PLoS Genet ; 14(7): e1007541, 2018 07.
Article in English | MEDLINE | ID: mdl-30059501

ABSTRACT

DNA replication stress (DRS) leads to the accumulation of stalled DNA replication forks leaving a fraction of genomic loci incompletely replicated, a source of chromosomal rearrangements during their partition in mitosis. MUS81 is known to limit the occurrence of chromosomal instability by processing these unresolved loci during mitosis. Here, we unveil that the endonucleases ARTEMIS and XPF-ERCC1 can also induce stalled DNA replication forks cleavage through non-epistatic pathways all along S and G2 phases of the cell cycle. We also showed that both nucleases are recruited to chromatin to promote replication fork restart. Finally, we found that rapid chromosomal breakage controlled by ARTEMIS and XPF is important to prevent mitotic segregation defects. Collectively, these results reveal that Rapid Replication Fork Breakage (RRFB) mediated by ARTEMIS and XPF in response to DRS contributes to DNA replication efficiency and limit chromosomal instability.


Subject(s)
DNA-Binding Proteins/metabolism , Endonucleases/metabolism , G2 Phase/genetics , Nuclear Proteins/metabolism , S Phase/genetics , Cell Line, Tumor , Chromosome Segregation/physiology , DNA Breaks, Double-Stranded , DNA Damage/physiology , DNA Repair/physiology , DNA-Binding Proteins/genetics , Endonucleases/genetics , Fibroblasts , Genomic Instability/physiology , Holoenzymes/genetics , Holoenzymes/metabolism , Humans , Nuclear Proteins/genetics , RNA, Small Interfering/metabolism
5.
JCI Insight ; 4(21)2019 11 01.
Article in English | MEDLINE | ID: mdl-31672935

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) relies on hyperactivated protein synthesis. Consistently, human and mouse PDAC lose expression of the translational repressor and mTOR target 4E-BP1. Using genome-wide polysome profiling, we here explore mRNAs whose translational efficiencies depend on the mTOR/4E-BP1 axis in pancreatic cancer cells. We identified a functional enrichment for mRNAs encoding DNA replication and repair proteins, including RRM2 and CDC6. Consequently, 4E-BP1 depletion favors DNA repair and renders DNA replication insensitive to mTOR inhibitors, in correlation with a sustained protein expression of CDC6 and RRM2, which is inversely correlated with 4E-BP1 expression in PDAC patient samples. DNA damage and pancreatic lesions induced by an experimental pancreatitis model uncover that 4E-BP1/2-deleted mice display an increased acinar cell proliferation and a better recovery than WT animals. Targeting translation, independently of 4E-BP1 status, using eIF4A RNA helicase inhibitors (silvestrol derivatives) selectively modulates translation and limits CDC6 expression and DNA replication, leading to reduced PDAC tumor growth. In summary, 4E-BP1 expression loss during PDAC development induces selective changes in translation of mRNA encoding DNA replication and repair protein. Importantly, targeting protein synthesis by eIF4A inhibitors circumvents PDAC resistance to mTOR inhibition.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle Proteins/genetics , DNA Replication , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Humans , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Biosynthesis , TOR Serine-Threonine Kinases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL