ABSTRACT
Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.
Subject(s)
Internationality , National Health Programs , Rare Diseases/diagnosis , Rare Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Adaptor Proteins, Signal Transducing/genetics , Alleles , Databases, Factual , Erythrocytes/metabolism , GATA1 Transcription Factor/genetics , Humans , Phenotype , Quantitative Trait Loci , Receptors, Thrombopoietin/genetics , State Medicine , United KingdomABSTRACT
BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.
Subject(s)
Extracellular Matrix Proteins , Lung , Pulmonary Arterial Hypertension , Humans , Animals , Lung/metabolism , Lung/pathology , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Rats , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Male , Genome-Wide Association Study , Gene Regulatory Networks , Signal Transduction , Gene Expression Profiling , Smad3 Protein/metabolism , Smad3 Protein/genetics , Female , Rats, Sprague-Dawley , Smad2 Protein/metabolism , Smad2 Protein/genetics , Transcriptome , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/drug effects , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Myocytes, Smooth Muscle/drug effects , Middle Aged , MultiomicsABSTRACT
RATIONALE: While sex differences in right heart phenotypes have been observed, the molecular drivers remain unknown. OBJECTIVES: To provide biological insights into sex differences in the structure and function of the right ventricle (RV) using common genetic variation. METHODS: RV phenotypes were obtained from cardiac magnetic resonance imaging in 18,156 women and 16,171 men from the UK Biobank. Observational analyses and sex-stratified genome-wide association studies were performed. Candidate female-specific loci were evaluated against invasively measured cardiac performance in 479 female patients with idiopathic or heritable pulmonary arterial hypertension (PAH), recruited to the UK NIHR BioResource Rare Diseases study. MEASUREMENTS AND MAIN RESULTS: Sex was associated with differences in RV volumes and ejection fraction in models adjusting for left heart counterparts, blood pressure, lung function and sex hormone levels. Six genome-wide significant loci (13%) revealed heterogeneity of allelic effects between women and men, and significant sex-by-genotype interaction. These included two sex-specific candidate loci present in women only: a locus for RV ejection fraction in BMPR1A and a locus for RV end-systolic volume near DMRT2. Epigenetic data in RV tissue indicate that variation at the BMPR1A locus likely alters transcriptional regulation. In female patients with PAH, a variant located in the promoter of BMPR1A was significantly associated with cardiac index (effect size 0.16 l/min/m2), despite similar RV afterload. CONCLUSIONS: BMPR1A has emerged as a biologically plausible candidate gene for female-specific genetic determination of RV function, showing associations with cardiac performance under chronically increased afterload in female patients with PAH.
ABSTRACT
Rationale: Chronic thromboembolic pulmonary hypertension involves the formation and nonresolution of thrombus, dysregulated inflammation, angiogenesis, and the development of a small-vessel vasculopathy. Objectives: We aimed to establish the genetic basis of chronic thromboembolic pulmonary hypertension to gain insight into its pathophysiological contributors. Methods: We conducted a genome-wide association study on 1,907 European cases and 10,363 European control subjects. We coanalyzed our results with existing results from genome-wide association studies on deep vein thrombosis, pulmonary embolism, and idiopathic pulmonary arterial hypertension. Measurements and Main Results: Our primary association study revealed genetic associations at the ABO, FGG, F11, MYH7B, and HLA-DRA loci. Through our coanalysis, we demonstrate further associations with chronic thromboembolic pulmonary hypertension at the F2, TSPAN15, SLC44A2, and F5 loci but find no statistically significant associations shared with idiopathic pulmonary arterial hypertension. Conclusions: Chronic thromboembolic pulmonary hypertension is a partially heritable polygenic disease, with related though distinct genetic associations with pulmonary embolism and deep vein thrombosis.
Subject(s)
Genome-Wide Association Study , Hypertension, Pulmonary , Pulmonary Embolism , Humans , Pulmonary Embolism/genetics , Pulmonary Embolism/complications , Hypertension, Pulmonary/genetics , Male , Female , Middle Aged , Chronic Disease , Genomics , Genetic Predisposition to Disease , Adult , Case-Control Studies , Aged , Venous Thrombosis/geneticsABSTRACT
BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).
Subject(s)
Genome, Human , Rare Diseases/genetics , Adolescent , Adult , Child , Child, Preschool , Family Characteristics , Female , Genetic Variation , Humans , Male , Middle Aged , Pilot Projects , Polymerase Chain Reaction , Rare Diseases/diagnosis , Sensitivity and Specificity , State Medicine , United Kingdom , Whole Genome Sequencing , Young AdultABSTRACT
Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.
Subject(s)
Genetic Testing , Genomics , Hypertension, Pulmonary , Humans , Hypertension, Pulmonary/genetics , Precision Medicine , Genetic Predisposition to DiseaseABSTRACT
Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.
Subject(s)
T-Box Domain Proteins , Transcription Factors , Animals , Humans , T-Box Domain Proteins/genetics , Transcription Factors/genetics , PhenotypeABSTRACT
Pulmonary arterial hypertension (PAH) is a rare disease that can be caused by (likely) pathogenic germline genomic variants. In addition to the most prevalent disease gene, BMPR2 (bone morphogenetic protein receptor 2), several genes, some belonging to distinct functional classes, are also now known to predispose to the development of PAH. As a consequence, specialist and non-specialist clinicians and healthcare professionals are increasingly faced with a range of questions regarding the need for, approaches to and benefits/risks of genetic testing for PAH patients and/or related family members. We provide a consensus-based approach to recommendations for genetic counselling and assessment of current best practice for disease gene testing. We provide a framework and the type of information to be provided to patients and relatives through the process of genetic counselling, and describe the presently known disease causal genes to be analysed. Benefits of including molecular genetic testing within the management protocol of patients with PAH include the identification of individuals misclassified by other diagnostic approaches, the optimisation of phenotypic characterisation for aggregation of outcome data, including in clinical trials, and importantly through cascade screening, the detection of healthy causal variant carriers, to whom regular assessment should be offered.
Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Humans , Pulmonary Arterial Hypertension/genetics , Genetic Counseling/methods , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Mutation , Familial Primary Pulmonary Hypertension/genetics , Genetic Testing , Bone Morphogenetic Protein Receptors, Type II/genetics , Genetic Predisposition to DiseaseABSTRACT
PURPOSE: Pulmonary arterial hypertension (PAH) is a rare, progressive vasculopathy with significant cardiopulmonary morbidity and mortality. Genetic testing is currently recommended for adults diagnosed with heritable, idiopathic, anorexigen-, hereditary hemorrhagic telangiectasia-, and congenital heart disease-associated PAH, PAH with overt features of venous/capillary involvement, and all children diagnosed with PAH. Variants in at least 27 genes have putative evidence for PAH causality. Rigorous assessment of the evidence is needed to inform genetic testing. METHODS: An international panel of experts in PAH applied a semi-quantitative scoring system developed by the NIH Clinical Genome Resource to classify the relative strength of evidence supporting PAH gene-disease relationships based on genetic and experimental evidence. RESULTS: Twelve genes (BMPR2, ACVRL1, ATP13A3, CAV1, EIF2AK4, ENG, GDF2, KCNK3, KDR, SMAD9, SOX17, and TBX4) were classified as having definitive evidence and 3 genes (ABCC8, GGCX, and TET2) with moderate evidence. Six genes (AQP1, BMP10, FBLN2, KLF2, KLK1, and PDGFD) were classified as having limited evidence for causal effects of variants. TOPBP1 was classified as having no known PAH relationship. Five genes (BMPR1A, BMPR1B, NOTCH3, SMAD1, and SMAD4) were disputed because of a paucity of genetic evidence over time. CONCLUSION: We recommend that genetic testing includes all genes with definitive evidence and that caution be taken in the interpretation of variants identified in genes with moderate or limited evidence. Genes with no known evidence for PAH or disputed genes should not be included in genetic testing.
Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Adult , Child , Humans , Pulmonary Arterial Hypertension/genetics , Mutation , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/genetics , Genetic Predisposition to Disease , Genetic Testing , Bone Morphogenetic Protein Receptors, Type II/genetics , Bone Morphogenetic Protein Receptors, Type II/metabolism , Adenosine Triphosphatases/genetics , Membrane Transport Proteins/genetics , Activin Receptors, Type II/genetics , Protein Serine-Threonine Kinases/genetics , Bone Morphogenetic Proteins/geneticsABSTRACT
BACKGROUND: The molecular genetic basis of pulmonary arterial hypertension (PAH) is heterogeneous, with at least 26 genes displaying putative evidence for disease causality. Heterozygous variants in the ATP13A3 gene were recently identified as a new cause of adult-onset PAH. However, the contribution of ATP13A3 risk alleles to child-onset PAH remains largely unexplored. METHODS AND RESULTS: We report three families with a novel, autosomal recessive form of childhood-onset PAH due to biallelic ATP13A3 variants. Disease onset ranged from birth to 2.5 years and was characterised by high mortality. Using genome sequencing of parent-offspring trios, we identified a homozygous missense variant in one case, which was subsequently confirmed to cosegregate with disease in an affected sibling. Independently, compound heterozygous variants in ATP13A3 were identified in two affected siblings and in an unrelated third family. The variants included three loss of function variants (two frameshift, one nonsense) and two highly conserved missense substitutions located in the catalytic phosphorylation domain. The children were largely refractory to treatment and four died in early childhood. All parents were heterozygous for the variants and asymptomatic. CONCLUSION: Our findings support biallelic predicted deleterious ATP13A3 variants in autosomal recessive, childhood-onset PAH, indicating likely semidominant dose-dependent inheritance for this gene.
Subject(s)
Pulmonary Arterial Hypertension , Adenosine Triphosphatases/genetics , Adult , Child, Preschool , Familial Primary Pulmonary Hypertension/genetics , Heterozygote , Homozygote , Humans , Membrane Transport Proteins/genetics , MorbidityABSTRACT
Rationale: NT-proBNP (N-terminal pro-brain natriuretic peptide), a biomarker of cardiac origin, is used to risk stratify patients with pulmonary arterial hypertension (PAH). Its limitations include poor sensitivity to early vascular pathology. Other biomarkers of vascular or systemic origin may also be useful in the management of PAH. Objectives: Identify prognostic proteins in PAH that complement NT-proBNP and clinical risk scores. Methods: An aptamer-based assay (SomaScan version 4) targeting 4,152 proteins was used to measure plasma proteins in patients with idiopathic, heritable, or drug-induced PAH from the UK National Cohort of PAH (n = 357) and the French EFORT (Evaluation of Prognostic Factors and Therapeutic Targets in PAH) study (n = 79). Prognostic proteins were identified in discovery-replication analyses of UK samples. Proteins independent of 6-minute-walk distance and NT-proBNP entered least absolute shrinkage and selection operator modeling, and the best combination in a single score was evaluated against clinical targets in EFORT. Measurements and Main Results: Thirty-one proteins robustly informed prognosis independent of NT-proBNP and 6-minute-walk distance in the UK cohort. A weighted combination score of six proteins was validated at baseline (5-yr mortality; area under the curve [AUC], 0.73; 95% confidence interval [CI], 0.63-0.85) and follow-up in EFORT (AUC, 0.84; 95% CI, 0.75-0.94; P = 9.96 × 10-6). The protein score risk stratified patients independent of established clinical targets and risk equations. The addition of the six-protein model score to NT-proBNP improved prediction of 5-year outcomes from AUC 0.762 (0.702-0.821) to 0.818 (0.767-0.869) by receiver operating characteristic analysis (P = 0.00426 for difference in AUC) in the UK replication and French samples combined. Conclusions: The plasma proteome informs prognosis beyond established factors in PAH and may provide a more sensitive measure of therapeutic response.
Subject(s)
Pulmonary Arterial Hypertension , Area Under Curve , Biomarkers , Familial Primary Pulmonary Hypertension , Humans , Natriuretic Peptide, Brain , Peptide Fragments , Prognosis , ProteomeABSTRACT
Rationale: Pulmonary arterial hypertension (PAH) is characterized by structural remodeling of pulmonary arteries and arterioles. Underlying biological processes are likely reflected in a perturbation of circulating proteins. Objectives: To quantify and analyze the plasma proteome of patients with PAH using inherited genetic variation to inform on underlying molecular drivers. Methods: An aptamer-based assay was used to measure plasma proteins in 357 patients with idiopathic or heritable PAH, 103 healthy volunteers, and 23 relatives of patients with PAH. In discovery and replication subgroups, the plasma proteomes of PAH and healthy individuals were compared, and the relationship to transplantation-free survival in PAH was determined. To examine causal relationships to PAH, protein quantitative trait loci (pQTL) that influenced protein levels in the patient population were used as instruments for Mendelian randomization (MR) analysis. Measurements and Main Results: From 4,152 annotated plasma proteins, levels of 208 differed between patients with PAH and healthy subjects, and 49 predicted long-term survival. MR based on cis-pQTL located in proximity to the encoding gene for proteins that were prognostic and distinguished PAH from health estimated an adverse effect for higher levels of netrin-4 (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.16-2.08) and a protective effect for higher levels of thrombospondin-2 (OR, 0.83; 95% CI, 0.74-0.94) on PAH. Both proteins tracked the development of PAH in previously healthy relatives and changes in thrombospondin-2 associated with pulmonary arterial pressure at disease onset. Conclusions: Integrated analysis of the plasma proteome and genome implicates two secreted matrix-binding proteins, netrin-4 and thrombospondin-2, in the pathobiology of PAH.
Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Blood Proteins/genetics , Familial Primary Pulmonary Hypertension , Humans , Netrins , Pathology, Molecular , Proteome , ThrombospondinsABSTRACT
Rationale: Autoimmunity is believed to play a role in idiopathic pulmonary arterial hypertension (IPAH). It is not clear whether this is causative or a bystander of disease and if it carries any prognostic or treatment significance. Objectives: To study autoimmunity in IPAH using a large cross-sectional cohort. Methods: Assessment of the circulating immune cell phenotype was undertaken using flow cytometry, and the profile of serum immunoglobulins was generated using a standardized multiplex array of 19 clinically validated autoantibodies in 473 cases and 946 control subjects. Additional glutathione S-transferase fusion array and ELISA data were used to identify a serum autoantibody to BMPR2 (bone morphogenetic protein receptor type 2). Clustering analyses and clinical correlations were used to determine associations between immunogenicity and clinical outcomes. Measurements and Main Results: Flow cytometric immune profiling demonstrates that IPAH is associated with an altered humoral immune response in addition to raised IgG3. Multiplexed autoantibodies were significantly raised in IPAH, and clustering demonstrated three distinct clusters: "high autoantibody," "low autoantibody," and a small "intermediate" cluster exhibiting high concentrations of ribonucleic protein complex. The high-autoantibody cluster had worse hemodynamics but improved survival. A small subset of patients demonstrated immunoglobulin reactivity to BMPR2. Conclusions: This study establishes aberrant immune regulation and presence of autoantibodies as key features in the profile of a significant proportion of patients with IPAH and is associated with clinical outcomes.
Subject(s)
Autoimmunity , Hypertension, Pulmonary , Autoantibodies , Cross-Sectional Studies , Familial Primary Pulmonary Hypertension , Humans , Hypertension, Pulmonary/geneticsABSTRACT
Rationale: Despite the increased recognition of TBX4 (T-BOX transcription factor 4)-associated pulmonary arterial hypertension (PAH), genotype-phenotype associations are lacking and may provide important insights. Objectives: To compile and functionally characterize all TBX4 variants reported to date and undertake a comprehensive genotype-phenotype analysis. Methods: We assembled a multicenter cohort of 137 patients harboring monoallelic TBX4 variants and assessed the pathogenicity of missense variation (n = 42) using a novel luciferase reporter assay containing T-BOX binding motifs. We sought genotype-phenotype correlations and undertook a comparative analysis with patients with PAH with BMPR2 (Bone Morphogenetic Protein Receptor type 2) causal variants (n = 162) or no identified variants in PAH-associated genes (n = 741) genotyped via the National Institute for Health Research BioResource-Rare Diseases. Measurements and Main Results: Functional assessment of TBX4 missense variants led to the novel finding of gain-of-function effects associated with older age at diagnosis of lung disease compared with loss-of-function effects (P = 0.038). Variants located in the T-BOX and nuclear localization domains were associated with earlier presentation (P = 0.005) and increased incidence of interstitial lung disease (P = 0.003). Event-free survival (death or transplantation) was shorter in the T-BOX group (P = 0.022), although age had a significant effect in the hazard model (P = 0.0461). Carriers of TBX4 variants were diagnosed at a younger age (P < 0.001) and had worse baseline lung function (FEV1, FVC) (P = 0.009) than the BMPR2 and no identified causal variant groups. Conclusions: We demonstrated that TBX4 syndrome is not strictly the result of haploinsufficiency but can also be caused by gain of function. The pleiotropic effects of TBX4 in lung disease may be in part explained by the differential effect of pathogenic mutations located in critical protein domains.
Subject(s)
Gain of Function Mutation , Lung Diseases , Humans , T-Box Domain Proteins/genetics , Bone Morphogenetic Protein Receptors, Type II/genetics , Phenotype , Lung Diseases/genetics , Mutation/genetics , GenotypeABSTRACT
BACKGROUND: Inflammation and dysregulated immunity are important in the development of pulmonary arterial hypertension (PAH). Compelling preclinical data supports the therapeutic blockade of interleukin-6 (IL-6) signalling. METHODS: We conducted a phase 2 open-label study of intravenous tocilizumab (8â mg·kg-1) over 6â months in patients with group 1 PAH. Co-primary end-points were safety, defined by incidence and severity of adverse events, and change in pulmonary vascular resistance. Separately, a mendelian randomisation study was undertaken on 11â744 individuals with European ancestry including 2085 patients with idiopathic/heritable disease for the IL-6 receptor (IL6R) variant (rs7529229), known to associate with circulating IL-6R levels. RESULTS: We recruited 29 patients (male/female 10/19; mean±sd age 54.9±11.4â years). Of these, 19 had heritable/idiopathic PAH and 10 had connective tissue disease-associated PAH. Six were withdrawn prior to drug administration; 23 patients received at least one dose of tocilizumab. Tocilizumab was discontinued in four patients owing to serious adverse events. There were no deaths. Despite evidence of target engagement in plasma IL-6 and C-reactive protein levels, both intention-to-treat and modified intention-to-treat analyses demonstrated no change in pulmonary vascular resistance. Inflammatory markers did not predict treatment response. Mendelian randomisation did not support an effect of the lead IL6R variant on risk of PAH (OR 0.99, p=0.88). CONCLUSION: Adverse events were consistent with the known safety profile of tocilizumab. Tocilizumab did not show any consistent treatment effect.
Subject(s)
Biomedical Research , Pulmonary Arterial Hypertension , Adult , Aged , Familial Primary Pulmonary Hypertension , Female , Humans , Interleukin-6 , Male , Middle Aged , Treatment OutcomeABSTRACT
In the Elongator-dependent modification pathway, chemical modifications are introduced at the wobble uridines at position 34 in transfer RNAs (tRNAs), which serve to optimize codon translation rates. Here, we show that this three-step modification pathway exists in Dictyostelium discoideum, model of the evolutionary superfamily Amoebozoa. Not only are previously established modifications observable by mass spectrometry in strains with the most conserved genes of each step deleted, but also additional modifications are detected, indicating a certain plasticity of the pathway in the amoeba. Unlike described for yeast, D. discoideum allows for an unconditional deletion of the single tQCUG gene, as long as the Elongator-dependent modification pathway is intact. In gene deletion strains of the modification pathway, protein amounts are significantly reduced as shown by flow cytometry and Western blotting, using strains expressing different glutamine leader constructs fused to GFP. Most dramatic are these effects, when the tQCUG gene is deleted, or Elp3, the catalytic component of the Elongator complex is missing. In addition, Elp3 is the most strongly conserved protein of the modification pathway, as our phylogenetic analysis reveals. The implications of this observation are discussed with respect to the evolutionary age of the components acting in the Elongator-dependent modification pathway.
Subject(s)
Dictyostelium/genetics , RNA, Transfer/metabolism , Anticodon/chemistry , Anticodon/metabolism , Codon , Dictyostelium/metabolism , Gene Deletion , Glutamine , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Mutation , Nucleosides/chemistry , Phylogeny , Protein Biosynthesis , Protozoan Proteins/classification , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Uridine/metabolismABSTRACT
BACKGROUND: Cysteine-altering NOTCH3 variants identical to those causing the rare monogenic form of stroke, CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy), have been reported more common than expected in the general population, but their clinical significance and contribution to stroke and dementia risk in the community remain unclear. METHODS: Cysteine-altering NOTCH3 variants were identified in UK Biobank whole-exome sequencing data (N=200 632). Frequency of stroke, vascular dementia and other clinical features of CADASIL, and MRI white matter hyperintensity volume were compared between variant carriers and non-carriers. MRIs from those with variants were visually rated, each matched with three controls. RESULTS: Of 200 632 participants with exome sequencing data available, 443 (~1 in 450) carried 67 different cysteine-altering NOTCH3 variants. After adjustment for various covariates, NOTCH3 variant carriers had increased risk of stroke (OR: 2.33, p=0.0004) and vascular dementia (OR: 5.00, p=0.007), and increased white matter hyperintensity volume (standardised difference: 0.52, p<0.001) and white matter ultrastructural damage on diffusion MRI (standardised difference: 0.72, p<0.001). On visual analysis of MRIs from 47 carriers and 148 matched controls, variants were associated with presence of lacunes (OR: 5.97, p<0.001) and cerebral microbleeds (OR: 4.38, p<0.001). White matter hyperintensity prevalence was most increased in the anterior temporal lobes (OR: 7.65, p<0.001) and external capsule (OR: 13.32, p<0.001). CONCLUSIONS: Cysteine-changing NOTCH3 variants are more common in the general population than expected from CADASIL prevalence and are risk factors for apparently 'sporadic' stroke and vascular dementia. They are associated with MRI changes of small vessel disease, in a distribution similar to that seen in CADASIL.
Subject(s)
CADASIL/genetics , Dementia, Vascular/genetics , Genetic Predisposition to Disease , Receptor, Notch3/genetics , Stroke/genetics , Adult , Aged , Brain/diagnostic imaging , Dementia, Vascular/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Stroke/diagnostic imagingABSTRACT
Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.
Subject(s)
Familial Primary Pulmonary Hypertension/blood , Familial Primary Pulmonary Hypertension/genetics , RNA/blood , Adult , Cohort Studies , Female , Gene Expression Profiling , Humans , Male , Mendelian Randomization Analysis , Middle AgedABSTRACT
A 44-year-old Caucasian man presented with seizures and cognitive impairment. He had marked retinal drusen, and MR brain scan showed features of cerebral small vessel disease; he was diagnosed with a leukoencephalopathy of uncertain cause. He died at the age of 46 years and postmortem brain examination showed widespread small vessel changes described as a vasculopathy of unknown cause. Seven years postmortem, whole-genome sequencing identified a homozygous nonsense HTRA1 mutation (p.Arg302Ter), giving a retrospective diagnosis of cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy.
Subject(s)
CADASIL , Leukoencephalopathies , Adult , Alopecia , CADASIL/complications , CADASIL/diagnostic imaging , CADASIL/genetics , Cerebral Infarction , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/genetics , Male , Middle Aged , Mutation/genetics , Retrospective Studies , Spinal DiseasesABSTRACT
Beyond the major gene BMPR2, several new genes predisposing to PAH have been identified during the last decade. Recently, preliminary evidence of the involvement of the KDR gene was found in a large genetic association study.We prospectively analysed the KDR gene by targeted panel sequencing in a series of 311 PAH patients referred to a clinical molecular laboratory for genetic diagnosis of PAH.Two index cases with severe PAH from two different families were found to carry a loss-of-function mutation in the KDR gene. These two index cases were clinically characterised by low diffusing capacity for carbon monoxide adjusted for haemoglobin (D LCOc) and interstitial lung disease. In one family, segregation analysis revealed that variant carriers are either presenting with PAH associated with low D LCOc, or have only decreased D LCOc, whereas non-carrier relatives have normal D LCOc. In the second family, a single affected carrier was alive. His carrier mother was unaffected with normal D LCOc.We provided genetic evidence for considering KDR as a newly identified PAH-causing gene by describing the segregation of KDR mutations with PAH in two families. In our study, KDR mutations are associated with a particular form of PAH characterised by low D LCOc and radiological evidence of parenchymal lung disease including interstitial lung disease and emphysema.