Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 20(3): e3001579, 2022 03.
Article in English | MEDLINE | ID: mdl-35263322

ABSTRACT

Understanding how antibiotic use drives resistance is crucial for guiding effective strategies to limit the spread of resistance, but the use-resistance relationship across pathogens and antibiotics remains unclear. We applied sinusoidal models to evaluate the seasonal use-resistance relationship across 3 species (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) and 5 antibiotic classes (penicillins, macrolides, quinolones, tetracyclines, and nitrofurans) in Boston, Massachusetts. Outpatient use of all 5 classes and resistance in inpatient and outpatient isolates in 9 of 15 species-antibiotic combinations showed statistically significant amplitudes of seasonality (false discovery rate (FDR) < 0.05). While seasonal peaks in use varied by class, resistance in all 9 species-antibiotic combinations peaked in the winter and spring. The correlations between seasonal use and resistance thus varied widely, with resistance to all antibiotic classes being most positively correlated with use of the winter peaking classes (penicillins and macrolides). These findings challenge the simple model of antibiotic use independently selecting for resistance and suggest that stewardship strategies will not be equally effective across all species and antibiotics. Rather, seasonal selection for resistance across multiple antibiotic classes may be dominated by use of the most highly prescribed antibiotic classes, penicillins and macrolides.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria , Escherichia coli/genetics , Macrolides/pharmacology , Macrolides/therapeutic use , Penicillins , Seasons
2.
Clin Infect Dis ; 79(2): 325-328, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-38509670

ABSTRACT

In a retrospective, ecological analysis of US medical claims, visit rates explained more of the geographic variation in outpatient antibiotic prescribing rates than per-visit prescribing. Efforts to reduce antibiotic use may benefit from addressing the factors that drive higher rates of outpatient visits, in addition to continued focus on stewardship.


Subject(s)
Anti-Bacterial Agents , Outpatients , Practice Patterns, Physicians' , Humans , Anti-Bacterial Agents/therapeutic use , United States , Retrospective Studies , Practice Patterns, Physicians'/statistics & numerical data , Outpatients/statistics & numerical data , Antimicrobial Stewardship/statistics & numerical data , Drug Prescriptions/statistics & numerical data , Ambulatory Care/statistics & numerical data
3.
Clin Infect Dis ; 78(5): 1345-1351, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38373257

ABSTRACT

BACKGROUND: Group A Streptococcus (GAS) causes an estimated 5.2 million outpatient visits for pharyngitis annually in the United States, with incidence peaking in winter, but the annual spatiotemporal pattern of GAS pharyngitis across the United States is poorly characterized. METHODS: We used outpatient claims data from individuals with private medical insurance between 2010 and 2018 to quantify GAS pharyngitis visit rates across U.S. census regions, subregions, and states. We evaluated seasonal and age-based patterns of geographic spread and the association between school start dates and the summertime upward inflection in GAS visits. RESULTS: The South had the most visits per person (yearly average, 39.11 visits per 1000 people; 95% confidence interval, 36.21-42.01) and the West had the fewest (yearly average, 17.63 visits per 1000 people; 95% confidence interval, 16.76-18.49). Visits increased earliest in the South and in school-age children. Differences in visits between the South and other regions were most pronounced in the late summer through early winter. Visits peaked earliest in central southern states, in December to January, and latest on the coasts, in March. The onset of the rise in GAS pharyngitis visits correlated with, but preceded, average school start times. CONCLUSIONS: The burden and timing of GAS pharyngitis varied across the continental United States, with the South experiencing the highest overall rates and earliest onset and peak in outpatient visits. Understanding the drivers of these regional differences in GAS pharyngitis will help in identifying and targeting prevention measures.


Subject(s)
Pharyngitis , Seasons , Streptococcal Infections , Streptococcus pyogenes , Humans , Pharyngitis/microbiology , Pharyngitis/epidemiology , United States/epidemiology , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Child , Child, Preschool , Adolescent , Female , Male , Adult , Young Adult , Middle Aged , Infant , Incidence , Spatio-Temporal Analysis , Aged
4.
PLoS Med ; 21(7): e1004424, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38976754

ABSTRACT

BACKGROUND: Since common diagnostic tests for gonorrhea do not provide information about susceptibility to antibiotics, treatment of gonorrhea remains empiric. Antibiotics used for empiric therapy are usually changed once resistance prevalence exceeds a certain threshold (e.g., 5%). A low switch threshold is intended to increase the probability that an infection is successfully treated with the first-line antibiotic, but it could also increase the pace at which recommendations are switched to newer antibiotics. Little is known about the impact of changing the switch threshold on the incidence of gonorrhea, the rate of treatment failure, and the overall cost and quality-adjusted life-years (QALYs) associated with gonorrhea. METHODS AND FINDINGS: We developed a transmission model of gonococcal infection with multiple resistant strains to project gonorrhea-associated costs and loss in QALYs under different switch thresholds among men who have sex with men (MSM) in the United States. We accounted for the costs and disutilities associated with symptoms, diagnosis, treatment, and sequelae, and combined costs and QALYs in a measure of net health benefit (NHB). Our results suggest that under a scenario where 3 antibiotics are available over the next 50 years (2 suitable for the first-line therapy of gonorrhea and 1 suitable only for the retreatment of resistant infections), changing the switch threshold between 1% and 10% does not meaningfully impact the annual number of gonorrhea cases, total costs, or total QALY losses associated with gonorrhea. However, if a new antibiotic is to become available in the future, choosing a lower switch threshold could improve the population NHB. If in addition, drug-susceptibility testing (DST) is available to inform retreatment regimens after unsuccessful first-line therapy, setting the switch threshold at 1% to 2% is expected to maximize the population NHB. A limitation of our study is that our analysis only focuses on the MSM population and does not consider the influence of interventions such as vaccine and common use of rapid drugs susceptibility tests to inform first-line therapy. CONCLUSIONS: Changing the switch threshold for first-line antibiotics may not substantially change the health and financial outcomes associated with gonorrhea. However, the switch threshold could be reduced when newer antibiotics are expected to become available soon or when in addition to future novel antibiotics, DST is also available to inform retreatment regimens.


Subject(s)
Anti-Bacterial Agents , Cost-Benefit Analysis , Gonorrhea , Homosexuality, Male , Quality-Adjusted Life Years , Humans , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/economics , Gonorrhea/diagnosis , Male , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/economics , Prevalence , United States/epidemiology , Neisseria gonorrhoeae/drug effects , Drug Resistance, Bacterial , Cost-Effectiveness Analysis
5.
Am J Epidemiol ; 193(1): 17-25, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37625444

ABSTRACT

Rapid point-of-care tests that diagnose gonococcal infections and identify susceptibility to antibiotics enable individualized treatment. This could improve patient outcomes and slow the emergence and spread of antibiotic resistance. However, little is known about the long-term impact of such diagnostics on the burden of gonorrhea and the effective life span of antibiotics. We used a mathematical model of gonorrhea transmission among men who have sex with men in the United States to project the annual rate of reported gonorrhea cases and the effective life span of ceftriaxone, the recommended antibiotic for first-line treatment of gonorrhea, as well as 2 previously recommended antibiotics, ciprofloxacin and tetracycline, when a rapid drug susceptibility test that estimates susceptibility to ciprofloxacin and tetracycline is available. The use of a rapid drug susceptibility test with ≥50% sensitivity and ≥95% specificity, defined in terms of correct ascertainment of drug susceptibility and nonsusceptibility status, could increase the combined effective life span of ciprofloxacin, tetracycline, and ceftriaxone by at least 2 years over 25 years of simulation. If test specificity is imperfect, however, the increase in the effective life span of antibiotics is accompanied by an increase in the rate of reported gonorrhea cases even under perfect sensitivity.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , United States/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Ceftriaxone/therapeutic use , Ceftriaxone/pharmacology , Homosexuality, Male , Longevity , Neisseria gonorrhoeae , Microbial Sensitivity Tests , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Tetracycline/pharmacology , Tetracycline/therapeutic use , Drug Resistance, Bacterial
6.
J Med Virol ; 96(3): e29505, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38465748

ABSTRACT

SARS-CoV-2 antibody levels may serve as a correlate for immunity and could inform optimal booster timing. The relationship between antibody levels and protection from infection was evaluated in vaccinated individuals from the US National Basketball Association who had antibody levels measured at a single time point from September 12, 2021, to December 31, 2021. Cox proportional hazards models were used to estimate the risk of infection within 90 days of serologic testing by antibody level (<250, 250-800, and >800 AU/mL1 ), adjusting for age, time since last vaccine dose, and history of SARS-CoV-2 infection. Individuals were censored on date of booster receipt. The analytic cohort comprised 2323 individuals and was 78.2% male, 68.1% aged ≤40 years, and 56.4% vaccinated (primary series) with the Pfizer-BioNTech mRNA vaccine. Among the 2248 (96.8%) individuals not yet boosted at antibody testing, 77% completed their primary vaccine series 4-6 months before testing and the median (interquartile range) antibody level was 293.5 (interquartile range: 121.0-740.5) AU/mL. Those with levels <250 AU/mL (adj hazard ratio [HR]: 2.4; 95% confidence interval [CI]: 1.5-3.7) and 250-800 AU/mL (adj HR: 1.5; 95% CI: 0.98-2.4) had greater infection risk compared to those with levels >800 AU/mL. Antibody levels could inform individual COVID-19 risk and booster scheduling.


Subject(s)
Basketball , COVID-19 , Vaccines , Humans , Male , Female , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral
7.
PLoS Biol ; 19(7): e3001333, 2021 07.
Article in English | MEDLINE | ID: mdl-34252080

ABSTRACT

SARS-CoV-2 infections are characterized by viral proliferation and clearance phases and can be followed by low-level persistent viral RNA shedding. The dynamics of viral RNA concentration, particularly in the early stages of infection, can inform clinical measures and interventions such as test-based screening. We used prospective longitudinal quantitative reverse transcription PCR testing to measure the viral RNA trajectories for 68 individuals during the resumption of the 2019-2020 National Basketball Association season. For 46 individuals with acute infections, we inferred the peak viral concentration and the duration of the viral proliferation and clearance phases. According to our mathematical model, we found that viral RNA concentrations peaked an average of 3.3 days (95% credible interval [CI] 2.5, 4.2) after first possible detectability at a cycle threshold value of 22.3 (95% CI 20.5, 23.9). The viral clearance phase lasted longer for symptomatic individuals (10.9 days [95% CI 7.9, 14.4]) than for asymptomatic individuals (7.8 days [95% CI 6.1, 9.7]). A second test within 2 days after an initial positive PCR test substantially improves certainty about a patient's infection stage. The effective sensitivity of a test intended to identify infectious individuals declines substantially with test turnaround time. These findings indicate that SARS-CoV-2 viral concentrations peak rapidly regardless of symptoms. Sequential tests can help reveal a patient's progress through infection stages. Frequent, rapid-turnaround testing is needed to effectively screen individuals before they become infectious.


Subject(s)
COVID-19 Nucleic Acid Testing/statistics & numerical data , COVID-19/diagnosis , RNA, Viral/genetics , SARS-CoV-2/genetics , Virus Replication/genetics , Virus Shedding/genetics , Adult , Athletes , Basketball , COVID-19/epidemiology , COVID-19/pathology , COVID-19/virology , Convalescence , Humans , Male , Prospective Studies , Public Health/methods , SARS-CoV-2/growth & development , Severity of Illness Index , United States/epidemiology
8.
PLoS Comput Biol ; 19(10): e1010898, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37883601

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of morbidity and mortality. Colonization by MRSA increases the risk of infection and transmission, underscoring the importance of decolonization efforts. However, success of these decolonization protocols varies, raising the possibility that some MRSA strains may be more persistent than others. Here, we studied how the persistence of MRSA colonization correlates with genomic presence of antibiotic resistance genes. Our analysis using a Bayesian mixed effects survival model found that genetic determinants of high-level resistance to mupirocin was strongly associated with failure of the decolonization protocol. However, we did not see a similar effect with genetic resistance to chlorhexidine or other antibiotics. Including strain-specific random effects improved the predictive performance, indicating that some strain characteristics other than resistance also contributed to persistence. Study subject-specific random effects did not improve the model. Our results highlight the need to consider the properties of the colonizing MRSA strain when deciding which treatments to include in the decolonization protocol.


Subject(s)
Anti-Infective Agents, Local , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Bayes Theorem , Staphylococcal Infections/drug therapy , Carrier State , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial
9.
J Infect Dis ; 227(7): 917-925, 2023 04 12.
Article in English | MEDLINE | ID: mdl-36735316

ABSTRACT

BACKGROUND: Neisseria gonorrhoeae is a major public health problem due to increasing incidence and antimicrobial resistance. Genetic markers of reduced susceptibility have been identified; the extent to which those are representative of global antimicrobial resistance is unknown. We evaluated the performance of whole-genome sequencing (WGS) used to predict susceptibility to ciprofloxacin and other antimicrobials using a global collection of N. gonorrhoeae isolates. METHODS: Susceptibility testing of common antimicrobials and the recently developed zolifodacin was performed using agar dilution to determine minimum inhibitory concentrations (MICs). We identified resistance alleles at loci known to contribute to antimicrobial resistance in N. gonorrhoeae from WGS data. We tested the ability of each locus to predict antimicrobial susceptibility. RESULTS: A total of 481 N. gonorrhoeae isolates, collected between 2004 and 2019 and making up 457 unique genomes, were sourced from 5 countries. All isolates with demonstrated susceptibility to ciprofloxacin (MIC ≤0.06 µg/mL) had a wild-type gyrA codon 91. Multilocus approaches were needed to predict susceptibility to other antimicrobials. All isolates were susceptible to zoliflodacin, defined by an MIC ≤0.25 µg/mL. CONCLUSIONS: Single marker prediction can be used to inform ciprofloxacin treatment of N. gonorrhoeae infection. A combination of molecular markers may be needed to determine susceptibility for other antimicrobials.


Subject(s)
Anti-Infective Agents , Gonorrhea , Humans , Neisseria gonorrhoeae , Anti-Bacterial Agents/pharmacology , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Ciprofloxacin/pharmacology , Anti-Infective Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Azithromycin/pharmacology
10.
Clin Infect Dis ; 77(5): 788-791, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37138444

ABSTRACT

Pre-existing tetracycline resistance in Neisseria gonorrhoeae limits the effectiveness of post-exposure prophylaxis (PEP) with doxycycline against gonorrhea, and selection for tetracycline resistance may influence prevalence of multi-drug resistant strains. Using genomic and antimicrobial susceptibility data from N. gonorrhoeae, we assessed the near-term impact of doxycycline PEP on N. gonorrhoeae resistance.


Subject(s)
Gonorrhea , Neisseria gonorrhoeae , Humans , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Doxycycline/pharmacology , Doxycycline/therapeutic use , Post-Exposure Prophylaxis , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Gonorrhea/drug therapy , Genomics , Tetracycline/pharmacology
11.
Clin Infect Dis ; 76(3): 382-388, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36196577

ABSTRACT

BACKGROUND: In the United States, children aged <5 years receive high volumes of antibiotics, which may contribute to antibiotic resistance. It has been unclear what role preventable illnesses and chronic comorbidities play in prompting antibiotic prescriptions. METHODS: We conducted an observational study with a cohort of 124 759 children aged <5 years born in the United States between 2008 and 2013 with private medical insurance. Study outcomes included the cumulative number of antibiotic courses dispensed per child by age 5 and the proportion of children for whom at least 1 antibiotic course was dispensed by age 5. We identified which chronic medical conditions predicted whether a child would be among the top 20% of antibiotic recipients. RESULTS: Children received a mean of 6.8 (95% confidence interval [CI]: 6.7-6.9) antibiotic courses by age 5, and 91% (95% CI: 90%-92%) of children had received at least 1 antibiotic course by age 5. Most antibiotic courses (71%; 95% CI: 70%-72%) were associated with respiratory infections. Presence of a pulmonary/respiratory, otologic, and/or immunological comorbidity substantially increase a child's odds of being in the top 20% of antibiotic recipients. Children with at least 1 of these conditions received a mean of 10.5 (95% CI: 10.4-10.6) antibiotic courses by age 5. CONCLUSIONS: Privately insured children in the United States receive many antibiotics early in life, largely due to respiratory infections. Antibiotic dispensing varies widely among children, with more antibiotics dispensed to children with pulmonary/respiratory, otologic, and/or immunological comorbidities.


Subject(s)
Anti-Bacterial Agents , Respiratory Tract Infections , Child , Humans , United States/epidemiology , Anti-Bacterial Agents/therapeutic use , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/epidemiology , Comorbidity , Prescriptions , Drug Resistance, Microbial
12.
PLoS Biol ; 18(2): e3000611, 2020 02.
Article in English | MEDLINE | ID: mdl-32045407

ABSTRACT

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Subject(s)
Disease Outbreaks , Genome, Viral/genetics , Mumps virus/genetics , Mumps/epidemiology , Mumps/transmission , Genotype , Humans , Molecular Epidemiology , Mumps/virology , Mumps virus/classification , Mutation , Phylogeny , Sequence Analysis, DNA , United States/epidemiology , Vaccination/statistics & numerical data , Viral Proteins/genetics
13.
PLoS Comput Biol ; 18(2): e1009842, 2022 02.
Article in English | MEDLINE | ID: mdl-35139073

ABSTRACT

In the absence of point-of-care gonorrhea diagnostics that report antibiotic susceptibility, gonorrhea treatment is empiric and determined by standardized guidelines. These guidelines are informed by estimates of resistance prevalence from national surveillance systems. We examined whether guidelines informed by local, rather than national, surveillance data could reduce the incidence of gonorrhea and increase the effective lifespan of antibiotics used in treatment guidelines. We used a transmission dynamic model of gonorrhea among men who have sex with men (MSM) in 16 U.S. metropolitan areas to determine whether spatially adaptive treatment guidelines based on local estimates of resistance prevalence can extend the effective lifespan of hypothetical antibiotics. The rate of gonorrhea cases in these metropolitan areas was 5,548 cases per 100,000 MSM in 2017. Under the current strategy of updating the treatment guideline when the prevalence of resistance exceeds 5%, we showed that spatially adaptive guidelines could reduce the annual rate of gonorrhea cases by 200 cases (95% uncertainty interval: 169, 232) per 100,000 MSM population while extending the use of a first-line antibiotic by 0.75 (0.55, 0.95) years. One potential strategy to reduce the incidence of gonorrhea while extending the effective lifespan of antibiotics is to inform treatment guidelines based on local, rather than national, resistance prevalence.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Gonorrhea/prevention & control , Homosexuality, Male , Humans , Incidence , Longevity , Male , Neisseria gonorrhoeae
14.
BMC Infect Dis ; 23(1): 252, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37081443

ABSTRACT

BACKGROUND: The World Health Organization recommends changing the first-line antimicrobial treatment for gonorrhoea when ≥ 5% of Neisseria gonorrhoeae cases fail treatment or are resistant. Susceptibility to ceftriaxone, the last remaining treatment option has been decreasing in many countries. We used antimicrobial resistance surveillance data and developed mathematical models to project the time to reach the 5% threshold for resistance to first-line antimicrobials used for N. gonorrhoeae. METHODS: We used data from the Gonococcal Resistance to Antimicrobials Surveillance Programme (GRASP) in England and Wales from 2000-2018 about minimum inhibitory concentrations (MIC) for ciprofloxacin, azithromycin, cefixime and ceftriaxone and antimicrobial treatment in two groups, heterosexual men and women (HMW) and men who have sex with men (MSM). We developed two susceptible-infected-susceptible models to fit these data and produce projections of the proportion of resistance until 2030. The single-step model represents the situation in which a single mutation results in antimicrobial resistance. In the multi-step model, the sequential accumulation of resistance mutations is reflected by changes in the MIC distribution. RESULTS: The single-step model described resistance to ciprofloxacin well. Both single-step and multi-step models could describe azithromycin and cefixime resistance, with projected resistance levels higher with the multi-step than the single step model. For ceftriaxone, with very few observed cases of full resistance, the multi-step model was needed to describe long-term dynamics of resistance. Extrapolating from the observed upward drift in MIC values, the multi-step model projected ≥ 5% resistance to ceftriaxone could be reached by 2030, based on treatment pressure alone. Ceftriaxone resistance was projected to rise to 13.2% (95% credible interval [CrI]: 0.7-44.8%) among HMW and 19.6% (95%CrI: 2.6-54.4%) among MSM by 2030. CONCLUSIONS: New first-line antimicrobials for gonorrhoea treatment are needed. In the meantime, public health authorities should strengthen surveillance for AMR in N. gonorrhoeae and implement strategies for continued antimicrobial stewardship. Our models show the utility of long-term representative surveillance of gonococcal antimicrobial susceptibility data and can be adapted for use in, and for comparison with, other countries.


Subject(s)
Gonorrhea , Sexual and Gender Minorities , Male , Humans , Female , Neisseria gonorrhoeae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Gonorrhea/drug therapy , Gonorrhea/epidemiology , Cefixime/pharmacology , Cefixime/therapeutic use , Ceftriaxone/pharmacology , Ceftriaxone/therapeutic use , Azithromycin/pharmacology , Azithromycin/therapeutic use , Homosexuality, Male , Drug Resistance, Bacterial , Ciprofloxacin/pharmacology , Ciprofloxacin/therapeutic use , Microbial Sensitivity Tests
15.
Health Care Manag Sci ; 26(2): 301-312, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36692583

ABSTRACT

Low rates of vaccination, emergence of novel variants of SARS-CoV-2, and increasing transmission relating to seasonal changes and relaxation of mitigation measures leave many US communities at risk for surges of COVID-19 that might strain hospital capacity, as in previous waves. The trajectories of COVID-19 hospitalizations differ across communities depending on their age distributions, vaccination coverage, cumulative incidence, and adoption of risk mitigating behaviors. Yet, existing predictive models of COVID-19 hospitalizations are almost exclusively focused on national- and state-level predictions. This leaves local policymakers in urgent need of tools that can provide early warnings about the possibility that COVID-19 hospitalizations may rise to levels that exceed local capacity. In this work, we develop a framework to generate simple classification rules to predict whether COVID-19 hospitalization will exceed the local hospitalization capacity within a 4- or 8-week period if no additional mitigating strategies are implemented during this time. This framework uses a simulation model of SARS-CoV-2 transmission and COVID-19 hospitalizations in the US to train classification decision trees that are robust to changes in the data-generating process and future uncertainties. These generated classification rules use real-time data related to hospital occupancy and new hospitalizations associated with COVID-19, and when available, genomic surveillance of SARS-CoV-2. We show that these classification rules present reasonable accuracy, sensitivity, and specificity (all ≥ 80%) in predicting local surges in hospitalizations under numerous simulated scenarios, which capture substantial uncertainties over the future trajectories of COVID-19. Our proposed classification rules are simple, visual, and straightforward to use in practice by local decision makers without the need to perform numerical computations.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Hospitalization , Hospitals , Age Distribution
16.
Proc Natl Acad Sci U S A ; 117(46): 29063-29068, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139558

ABSTRACT

Antibiotic use is a key driver of antibiotic resistance. Understanding the quantitative association between antibiotic use and resulting resistance is important for predicting future rates of antibiotic resistance and for designing antibiotic stewardship policy. However, the use-resistance association is complicated by "spillover," in which one population's level of antibiotic use affects another population's level of resistance via the transmission of bacteria between those populations. Spillover is known to have effects at the level of families and hospitals, but it is unclear if spillover is relevant at larger scales. We used mathematical modeling and analysis of observational data to address this question. First, we used dynamical models of antibiotic resistance to predict the effects of spillover. Whereas populations completely isolated from one another do not experience any spillover, we found that if even 1% of interactions are between populations, then spillover may have large consequences: The effect of a change in antibiotic use in one population on antibiotic resistance in that population could be reduced by as much as 50%. Then, we quantified spillover in observational antibiotic use and resistance data from US states and European countries for three pathogen-antibiotic combinations, finding that increased interactions between populations were associated with smaller differences in antibiotic resistance between those populations. Thus, spillover may have an important impact at the level of states and countries, which has ramifications for predicting the future of antibiotic resistance, designing antibiotic resistance stewardship policy, and interpreting stewardship interventions.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/physiology , Antimicrobial Stewardship , Bacteria/drug effects , Cross-Sectional Studies , Drug Resistance, Bacterial/drug effects , Europe , Hospitals , Humans , Streptococcus pneumoniae/drug effects , United States
17.
Clin Infect Dis ; 74(9): 1682-1685, 2022 05 03.
Article in English | MEDLINE | ID: mdl-34453431

ABSTRACT

Findings are described in 7 patients with severe acute respiratory syndrome coronavirus 2 reinfection from the National Basketball Association 2020-2021 occupational testing cohort, including clinical details, antibody test results, genomic sequencing, and longitudinal reverse-transcription polymerase chain reaction results. Reinfections were infrequent and varied in clinical presentation, viral dynamics, and immune response.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Reinfection , Research
18.
Clin Infect Dis ; 75(1): e105-e113, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35213690

ABSTRACT

BACKGROUND: Estimating the cumulative incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for setting public health policies. We leveraged deidentified Massachusetts newborn screening specimens as an accessible, retrospective source of maternal antibodies for estimating statewide seroprevalence in a nontest-seeking population. METHODS: We analyzed 72 117 newborn specimens collected from November 2019 through December 2020, representing 337 towns and cities across Massachusetts. Seroprevalence was estimated for the Massachusetts population after correcting for imperfect test specificity and nonrepresentative sampling using Bayesian multilevel regression and poststratification. RESULTS: Statewide seroprevalence was estimated to be 0.03% (90% credible interval [CI], 0.00-0.11) in November 2019 and rose to 1.47% (90% CI: 1.00-2.13) by May 2020, following sustained SARS-CoV-2 transmission in the spring. Seroprevalence plateaued from May onward, reaching 2.15% (90% CI: 1.56-2.98) in December 2020. Seroprevalence varied substantially by community and was particularly associated with community percent non-Hispanic Black (ß = .024; 90% CI: 0.004-0.044); i.e., a 10% increase in community percent non-Hispanic Black was associated with 27% higher odds of seropositivity. Seroprevalence estimates had good concordance with reported case counts and wastewater surveillance for most of 2020, prior to the resurgence of transmission in winter. CONCLUSIONS: Cumulative incidence of SARS-CoV-2 protective antibody in Massachusetts was low as of December 2020, indicating that a substantial fraction of the population was still susceptible. Maternal seroprevalence data from newborn screening can inform longitudinal trends and identify cities and towns at highest risk, particularly in settings where widespread diagnostic testing is unavailable.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Bayes Theorem , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Infant, Newborn , Neonatal Screening , Retrospective Studies , Seroepidemiologic Studies , Wastewater , Wastewater-Based Epidemiological Monitoring
19.
Antimicrob Agents Chemother ; 66(7): e0019222, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35736134

ABSTRACT

A consensus methodology for the pharmacometric assessment of candidate SARS-CoV-2 antiviral drugs would be useful for comparing trial results and improving trial design. The time to viral clearance, assessed by serial qPCR of nasopharyngeal swab samples, has been the most widely reported measure of virological response in clinical trials, but it has not been compared formally with other metrics, notably model-based estimates of the rate of viral clearance. We analyzed prospectively gathered viral clearance profiles from 280 infection episodes in vaccinated and unvaccinated individuals. We fitted different phenomenological pharmacodynamic models (single exponential decay, bi-exponential, penalized splines) and found that the clearance rate, estimated from a mixed effects single exponential decay model, is a robust pharmacodynamic summary of viral clearance. The rate of viral clearance, estimated from viral densities during the first week following peak viral load, provides increased statistical power (reduced type 2 error) compared with time to clearance. Antiviral effects approximately equivalent to those with currently used and recommended SARS-CoV-2 antiviral treatments, notably nirmatrelvir and molnupiravir, can be detected from randomized trials with sample sizes of only 35 to 65 patients per arm. We recommend that pharmacometric antiviral assessments should be conducted in early COVID-19 illness with serial qPCR samples taken over 1 week.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Clinical Trials as Topic , Humans , Kinetics , Treatment Outcome , Viral Load
20.
PLoS Biol ; 17(11): e3000547, 2019 11.
Article in English | MEDLINE | ID: mdl-31714937

ABSTRACT

The sensitivity of genotype-based diagnostics that predict antimicrobial susceptibility is limited by the extent to which they detect genes and alleles that lead to resistance. As novel resistance variants are expected to emerge, such sensitivity is expected to decline unless the new variants are detected and incorporated into the diagnostic. Here, we present a mathematical framework to define how many diagnostic failures may be expected under varying surveillance regimes and thus quantify the surveillance needed to maintain the sensitivity of genotype-based diagnostics.


Subject(s)
Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genotype , Epidemiological Monitoring , Genetic Markers , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL