Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Biochemistry ; 55(22): 3157-64, 2016 06 07.
Article in English | MEDLINE | ID: mdl-27198584

ABSTRACT

The enzyme UDP-glucose dehydrogenase (UGDH) catalyzes the reaction of UDP-glucose to UDP-glucuronate through two successive NAD(+)-dependent oxidation steps. Human UGDH apoprotein is purified as a mixture of dimeric and hexameric species. Addition of substrate and cofactor stabilizes the oligomeric state to primarily the hexameric form. To determine if the dynamic conformations of hUGDH are required for catalytic activity, we used site-specific unnatural amino acid incorporation to facilitate cross-linking of monomeric subunits into predominantly obligate oligomeric species. Optimal cross-linking was achieved by encoding p-benzoyl-l-phenylalanine at position 458, normally a glutamine located within the dimer-dimer interface, and exposing the enzyme to long wavelength ultraviolet (UV) radiation in the presence of substrate and cofactor. Hexameric complexes were purified by gel filtration chromatography and found to contain significant fractions of dimer and trimer (approximately 50%) along with another 10% higher-molecular mass species. The activity of the cross-linked enzyme was reduced by almost 60% relative to that of the un-cross-linked UGDH mutant, and UV exposure had no effect on the activity of the wild-type enzyme. These results support a model for catalysis in which the ability to dissociate the dimer-dimer interface is as important for maximal enzyme function as has been previously shown for the formation of the hexamer.


Subject(s)
Amino Acids/chemistry , Cross-Linking Reagents , Light , Protein Multimerization/radiation effects , Uridine Diphosphate Glucose Dehydrogenase/chemistry , Amino Acids/radiation effects , Catalysis , Humans , Kinetics , Models, Molecular , Oxidation-Reduction , Photochemical Processes , Protein Conformation , Uridine Diphosphate Glucose/metabolism , Uridine Diphosphate Glucose Dehydrogenase/metabolism
2.
Nat Commun ; 11(1): 595, 2020 01 30.
Article in English | MEDLINE | ID: mdl-32001716

ABSTRACT

Developmental epileptic encephalopathies are devastating disorders characterized by intractable epileptic seizures and developmental delay. Here, we report an allelic series of germline recessive mutations in UGDH in 36 cases from 25 families presenting with epileptic encephalopathy with developmental delay and hypotonia. UGDH encodes an oxidoreductase that converts UDP-glucose to UDP-glucuronic acid, a key component of specific proteoglycans and glycolipids. Consistent with being loss-of-function alleles, we show using patients' primary fibroblasts and biochemical assays, that these mutations either impair UGDH stability, oligomerization, or enzymatic activity. In vitro, patient-derived cerebral organoids are smaller with a reduced number of proliferating neuronal progenitors while mutant ugdh zebrafish do not phenocopy the human disease. Our study defines UGDH as a key player for the production of extracellular matrix components that are essential for human brain development. Based on the incidence of variants observed, UGDH mutations are likely to be a frequent cause of recessive epileptic encephalopathy.


Subject(s)
Epilepsy/genetics , Genes, Recessive , Loss of Function Mutation/genetics , Oxidoreductases/genetics , Uridine Diphosphate Glucose Dehydrogenase/genetics , Adolescent , Alleles , Animals , Child , Child, Preschool , Female , Humans , Infant , Kinetics , Male , Organoids/pathology , Oxidoreductases/chemistry , Pedigree , Protein Domains , Syndrome , Zebrafish
4.
Pediatrics ; 121(5): e1108-14, 2008 May.
Article in English | MEDLINE | ID: mdl-18450854

ABSTRACT

OBJECTIVE: Our goal was to describe the clinical spectrum of medium-chain acyl-CoA dehydrogenase deficiency detected by routine newborn screening and assess factors associated with elevations of octanoylcarnitine in newborns and characteristics associated with adverse clinical consequences of medium-chain acyl-CoA dehydrogenase deficiency. METHODS: The first 47 medium-chain acyl-CoA dehydrogenase deficiency cases detected by the New England Newborn Screening Program were classified according to initial and follow-up octanoylcarnitine values, octanoylcarnitine-decanoylcarnitine ratios, medium-chain acyl-CoA dehydrogenase genotype, follow-up biochemical parameters, and feeding by breast milk or formula. RESULTS: All 20 patients who were homozygous for 985A-->G had high initial octanoylcarnitine values (7.0-36.8 microM) and octanoylcarnitine-decanoylcarnitine ratios (7.0-14.5), whereas the 27 patients with 0 to 1 copy of 985A-->G exhibited a wide range of octanoylcarnitine values (0.5-28.6 microM) and octanoylcarnitine-decanoylcarnitine ratios (0.8-12.7). Initial newborn octanoylcarnitine values decreased by days 5 to 8, but the octanoylcarnitine-decanoylcarnitine ratio generally remained stable. Among 985A-->G homozygotes, breastfed newborns had higher initial octanoylcarnitine values than newborns who received formula. Adverse events occurred in 5 children, 4 985A-->G homozygotes and 1 compound heterozygote with a very high initial octanoylcarnitine: 2 survived severe neonatal hypoglycemia, 1 survived a severe hypoglycemic episode at 15 months of age, and 2 died as a result of medium-chain acyl-CoA dehydrogenase deficiency at ages 11 and 33 months. CONCLUSION: Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency has detected cases with a wide range of genotypes and biochemical abnormalities. Although most children do well, adverse outcomes have not been entirely avoided. Assessment of potential risk and determination of appropriate treatment remain a challenge.


Subject(s)
Acyl-CoA Dehydrogenase/deficiency , Neonatal Screening , Acyl-CoA Dehydrogenase/genetics , Biomarkers/blood , Breast Feeding , Carnitine/analogs & derivatives , Carnitine/blood , Humans , Infant Formula , Infant, Newborn , Point Mutation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL