ABSTRACT
Many viruses are detrimental to pregnancy and negatively affect fetal growth and development. What is not well understood is how virus-induced inflammation impacts fetal-placental growth and developmental trajectories, particularly when inflammation occurs in early pregnancy during nascent placental and embryo development. To address this issue, we simulated a systemic virus exposure in early pregnant rats (gestational day 8.5) by administering the viral dsRNA mimic polyinosinic:polycytidylic acid (PolyI:C). Maternal exposure to PolyI:C induced a potent antiviral response and hypoxia in the early pregnant uterus, containing the primordial placenta and embryo. Maternal PolyI:C exposure was associated with decreased expression of the maternally imprinted genes Mest, Sfrp2, and Dlk1, which encode proteins critical for placental growth. Exposure of pregnant dams to PolyI:C during early pregnancy reduced fetal growth trajectories throughout gestation, concomitant with smaller placentas, and altered placental structure at midgestation. No detectable changes in placental hemodynamics were observed, as determined by ultrasound biomicroscopy. An antiviral response was not evident in rat trophoblast stem (TS) cells following exposure to PolyI:C, or to certain PolyI:C-induced cytokines including IL-6. However, TS cells expressed high levels of type I IFNR subunits (Ifnar1 and Ifnar2) and responded to IFN-⺠by increasing expression of IFN-stimulated genes and decreasing expression of genes associated with the TS stem state, including Mest IFN-⺠also impaired the differentiation capacity of TS cells. These results suggest that an antiviral inflammatory response in the conceptus during early pregnancy impacts TS cell developmental potential and causes latent placental development and reduced fetal growth.
Subject(s)
Inflammation/immunology , Maternal Exposure/adverse effects , Placenta/physiology , Pregnancy/immunology , Trophoblasts/physiology , Virus Diseases/immunology , Animals , Cell Differentiation , Female , Fetal Development , Intercellular Signaling Peptides and Proteins/genetics , Interferons/genetics , Interferons/metabolism , Interleukin-6/metabolism , Membrane Proteins/genetics , Placentation , Poly I-C/immunology , Rats , Rats, Sprague-DawleyABSTRACT
Though preclinical models of type 1 diabetes (T1D) exhibit impaired muscle regeneration, this has yet to be investigated in humans with T1D. Here, we investigated the impact of damaging exercise (eccentric quadriceps contractions) in 18 physically active young adults with and without T1D. Pre- and postexercise (48 h and 96 h), the participants provided blood samples, vastus lateralis biopsies, and performed maximal voluntary quadriceps contractions (MVCs). Skeletal muscle sarcolemmal integrity, extracellular matrix (ECM) content, and satellite cell (SC) content/proliferation were assessed by immunofluorescence. Transmission electron microscopy was used to quantify ultrastructural damage. MVC was comparable between T1D and controls before exercise. Postexercise, MVC was decreased in both groups, but subjects with T1D exhibited moderately lower strength recovery at both 48 h and 96 h. Serum creatine kinase, an indicator of muscle damage, was moderately higher in participants with T1D at rest and exhibited a small elevation 96 h postexercise. Participants with T1D showed lower SC content at all timepoints and demonstrated a moderate delay in SC proliferation after exercise. A greater number of myofibers exhibited sarcolemmal damage (disrupted dystrophin) and increased ECM (laminin) content in participants with T1D despite no differences between groups in ultrastructural damage as assessed by electron microscopy. Finally, transcriptomic analyses revealed dysregulated gene networks involving RNA translation and mitochondrial respiration, providing potential explanations for previous observations of mitochondrial dysfunction in similar cohorts with T1D. Our findings indicate that skeletal muscle in young adults with moderately controlled T1D is altered after damaging exercise, suggesting that longer recovery times following intense exercise may be necessary.
Subject(s)
Diabetes Mellitus, Type 1/complications , Muscle Contraction , Muscular Diseases/etiology , Quadriceps Muscle/pathology , Regeneration , Adult , Biomarkers/blood , Case-Control Studies , Cell Proliferation , Creatine Kinase/blood , Diabetes Mellitus, Type 1/diagnosis , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Gene Expression Regulation , Humans , Male , Microvascular Density , Muscle Strength , Muscular Diseases/blood , Muscular Diseases/pathology , Muscular Diseases/physiopathology , Quadriceps Muscle/metabolism , Quadriceps Muscle/physiopathology , Recovery of Function , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Time Factors , Transcriptome , Young AdultABSTRACT
BACKGROUND: Molecular testing is critical to guiding treatment approaches in patients with metastatic non-small cell lung cancer (mNSCLC), with testing delays adversely impacting the timeliness of treatment decisions. Here, we aimed to evaluate the time from initial mNSCLC diagnosis to treatment decision (TTD) following implementation of in-house EGFR, ALK, and PD-L1 testing at our institution. METHODS: We conducted a retrospective chart review of 165 patients (send-out testing, n = 92; in-house testing, n = 73) with newly diagnosed mNSCLC treated at our institution. Data were compared during the send-out (March 2017-May 2019) and in-house (July 2019-March 2021) testing periods. We performed a detailed workflow analysis to provide insight on the pre-analytic, analytic, and post-analytic intervals that constituted the total TTD. RESULTS: TTD was significantly shorter with in-house testing (10 days vs. 18 days, p < 0.0001), driven largely by decreased internal handling and specimen transit times (2 days vs. 3 days, p < 0.0001) and laboratory turnaround times (TAT, 3 days vs. 8 days, p < 0.0001), with 96% of in-house cases meeting the international guideline of a ≤ 10-day intra-laboratory TAT (vs. 74% send-out, p < 0.001). Eighty-eight percent of patients with in-house testing had results available at their first oncology consultation (vs. 52% send-out, p < 0.0001), and all patients with in-house testing had results available at the time of treatment decision (vs. 86% send-out, p = 0.57). CONCLUSION: Our results demonstrate the advantages of in-house biomarker testing for mNSCLC at a tertiary oncology center. Incorporation of in-house testing may reduce barriers to offering personalized medicine by improving the time to optimal systemic therapy decision.
Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Retrospective Studies , Lung Neoplasms/diagnosis , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Canada , Molecular Diagnostic Techniques , Decision MakingABSTRACT
Background: Surgical risk in chronic thromboembolic pulmonary hypertension (CTEPH) depends on the proximity of thromboembolism on CT pulmonary angiography (CTPA). We assessed interobserver agreement for the quantification of thromboembolic lesions in CTEPH using a novel CTPA scoring index. Methods: Forty CTEPH patients (mean age, 58 ± 16 years; 19 men) with preoperative CTPA who underwent pulmonary endarterectomy (PEA) (08/2020-09/2021) were retrospectively included. Three radiologists scored each CTPA for chronic thromboembolism (occlusions, eccentric thickening, webs) using a 32-vessel model of the pulmonary vasculature, with interobserver agreement evaluated using Fleiss' kappa. CT level of disease was determined by the most proximal chronic thromboembolism: level 1 (main pulmonary artery), 2 (lobar), 3 (segmental) and 4 (subsegmental), and compared to surgical level at PEA. Results: Interobserver agreement for CT level of disease was moderate overall (κ = 0.52). Agreement was substantial overall at the main/lobar level (κ, mean = 0.71) when excluding the left upper lobe (κ = 0.17). Though segmental and subsegmental agreement suffered (κ = 0.31), we found substantial agreement for occlusions (κ = 0.72) compared to eccentric thickening (κ = 0.45) and webs (κ = 0.14). Correlation between CT level and surgical level was strong overall (τb = 0.73) and in the right lung (τb = 0.68), but weak in the left lung (τb = 0.42) (p < 0.05). Radiologists often over- and underestimated the proximal extent of disease in right and left lung, respectively. Conclusions: CT level of disease demonstrated good agreement between radiologists and was highly predictive of the surgical level in CTEPH. Occlusions were the most reliable sign of chronic thromboembolism and are important in assessing the segmental vasculature.
ABSTRACT
CONTEXT: Previous investigations on skeletal muscle health in type 1 diabetes (T1D) have generally focused on later stages of disease progression where comorbidities are present and are posited as a primary mechanism of muscle dysfunction. OBJECTIVE: To investigate skeletal muscle function and morphology across the adult lifespan in those with and without T1D. DESIGN: Participants underwent maximal contraction (MVC) testing, resting muscle biopsy, and venous blood sampling. SETTING: Procedures in this study were undertaken at the McMaster University Medical Centre. PARTICIPANTS: Sixty-five healthy adult (18-78 years old) men/males and women/females (T1Dâ =â 34; controlâ =â 31) matched for age/biological sex/body mass index; self-reported physical activity levels were included. MAIN OUTCOME MEASURES: Our primary measure in this study was MVC, with supporting histological/immunofluorescent measures. RESULTS: After 35 years of age ("older adults"), MVC declined quicker in T1D subjects compared to controls. Loss of strength in T1D was accompanied by morphological changes associated with accelerated aging. Type 1 myofiber grouping was higher in T1D, and the groups were larger and more numerous than in controls. Older T1D females exhibited more myofibers expressing multiple myosin heavy chain isoforms (hybrid fibers) than controls, another feature of accelerated aging. Conversely, T1D males exhibited a shift toward type 2 fibers, with less evidence of myofiber grouping or hybrid fibers. CONCLUSIONS: These data suggest impairments to skeletal muscle function and morphology exist in T1D. The decline in strength with T1D is accelerated after 35 years of age and may be responsible for the earlier onset of frailty, which characterizes those with diabetes.
Subject(s)
Aging/physiology , Diabetes Mellitus, Type 1/physiopathology , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/physiopathology , Adolescent , Adult , Aged , Diabetes Mellitus, Type 1/pathology , Exercise/physiology , Female , Humans , Male , Middle Aged , Muscle, Skeletal/pathology , Sex Factors , Young AdultABSTRACT
Type 1 diabetes (T1D) has been reported to negatively affect the health of skeletal muscle, though the underlying mechanisms are unknown. Myostatin, a myokine whose increased expression is associated with muscle-wasting diseases, has not been reported in humans with T1D but has been demonstrated to be elevated in preclinical diabetes models. Thus, the purpose of this study was to determine if there is an elevated expression of myostatin in the serum and skeletal muscle of persons with T1D compared to controls. Secondarily, we aimed to explore relationships between myostatin expression and clinically important metrics (e.g., HbA1c , strength, lean mass) in women and men with (N = 31)/without T1D (N = 24) between 18 and 72 years old. Body composition, baseline strength, blood sample and vastus lateralis muscle biopsy were evaluated. Serum, but not muscle, myostatin expression was significantly elevated in those with T1D versus controls, and to a greater degree in T1D women than T1D men. Serum myostatin levels were not significantly associated with HbA1c nor disease duration. A significant correlation between serum myostatin expression and maximal voluntary contraction (MVC) and body fat mass was demonstrated in control subjects, but these correlations did not reach significance in those with T1D (MVC: R = 0.64 controls vs. R = 0.37 T1D; Body fat: R = -0.52 controls/R = -0.02 T1D). Collectively, serum myostatin was correlated with lean mass (R = 0.45), and while this trend was noted in both groups separately, neither reached statistical significance (R = 0.47 controls/R = 0.33 T1D). Overall, while those with T1D exhibited elevated serum myostatin levels (particularly females) myostatin expression was not correlated with clinically relevant metrics despite some of these relationships existing in controls (e.g., lean/fat mass). Future studies will be needed to fully understand the mechanisms underlying increased myostatin in T1D, with relationships to insulin dosing being particularly important to elucidate.