Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Invest New Drugs ; 41(5): 629-637, 2023 10.
Article in English | MEDLINE | ID: mdl-37452982

ABSTRACT

The discovery and development of effective novel compounds is paramount in oncology for improving cancer therapy. In this study, we developed a new derivative of spiroindolone (7',8'-Dimethoxy-1',3'-dimethyl-1,2,3',4'-tetrahydrospiro[indole-3,5'- pyrazolo[3,4-c]isoquinolin]-2-one) and evaluated its anticancer- and immunomodulatory potential in a vitro model of chronic leukemia. We utilized the chronic leukemia cell line K562, as well as non-cancerous peripheral blood mononuclear cells (PBMC) and Vero cells (kidney epithelium of Cercopithecus aethiops). We assessed the cytotoxicity of the compound using the MTT assay, and performed cell cycle assays to determine its impact on different stages of the cell cycle. To evaluate its antineoplastic activity, we conducted a colony formation test to measure the effect of the compound on the clonal growth of cancer cells. Furthermore, we evaluated the immunomodulatory activity of the compound by measuring the levels of pro and anti-inflammatory cytokines. The study findings demonstrate that the spiroindolone-derived compound exerted noteworthy cytotoxic effects against K562 cells, with an IC50 value of 25.27 µg/mL. Additionally, it was observed that the compound inhibited the clonal proliferation of K562 cells while displaying minimal toxicity to normal cells. The compound exhibited its antiproliferative activity by inducing G2/M cell cycle arrest, preventing the entry of K562 cells into mitosis. Notably, the compound demonstrated an immunomodulatory effect by upregulating the production of cytokines IL-6 and IL-12/23p40. In conclusion, the spiroindolone-derived compound evaluated in this study has demonstrated significant potential as a therapeutic agent for the treatment of chronic myeloid leukemia. Further investigations are warranted to explore its clinical applications.


Subject(s)
Antineoplastic Agents , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Humans , Animals , Chlorocebus aethiops , Leukocytes, Mononuclear , Vero Cells , Cell Proliferation , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , K562 Cells , Cytokines/pharmacology , Indoles/pharmacology
2.
Molecules ; 27(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268558

ABSTRACT

Recently, an unusual elongation of the C-S bond was observed experimentally for some sulfur-containing heterocycles. Using a superior ab initio (SCS-MP2/cc-pVTZ) level of theory, we showed that the phenomenon can be explained by a contribution of a donor-acceptor adduct of a carbene with an unsaturated ligand. One may achieve further elongation of the C-S bond, eventually turning it to a coordinate one, by increasing the stability of each part of the system as, e.g., in the utmost case of spiro adducts with Arduengo carbenes. The effect of carbene stability was quantified by employing the isodesmic reactions of carbene exchange.

3.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807240

ABSTRACT

Ethnobotanical studies have reported the traditional medicinal uses of Acacia senegal (L.) Willd. and Argania spinosa (L.) Skeels against kidney stone formation and other chronic kidney diseases. The present work is undertaken to study the litholytic activity and the inhibiting activity of calcium oxalate crystallization by bioactive compounds identified in Argania spinosa (L.) Skeels press-cake (residue of Argan oil) and in Acacia senegal (L.) Willd. The litholytic activity was studied in vitro on cystine and uric acid stones using a porous bag and an Erlenmeyer glass. The study of the inhibiting activity of calcium oxalate crystallization, was based on temporal measurements of the optical density, registered at a 620 nm wavelength for 30 min using an ultraviolet−visible spectrophotometer. The silylation method was performed to identify phytochemicals, followed by gas chromatography coupled with mass spectrophotometry (GC/MS) analysis. The results show significant litholytic activity of Argania Spinosa press-cake hydro-ethanolic extract on uric acid and cystine stones, respectively, with dissolution rates (DR) of 86.38% and 60.42% versus 3.23% and 9.48% for the hydro-ethanolic extract of Acacia senegal exudate. Furthermore, the percentages of nucleation inhibition are 83.78% and 43.77% (p ˂ 0.05) for Argania spinosa and Acacia senegal, respectively. The results point to the detection of 17 phytochemicals in Argania spinosa press-cake extract, the majority of which are phenolic acids and have potent anti-urolithiatic action.


Subject(s)
Acacia , Sapotaceae , Calcium Oxalate , Cystine , Fruit/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Sapotaceae/chemistry , Senegal , Uric Acid/analysis
4.
Molecules ; 27(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35630611

ABSTRACT

Alkaloids are natural products known as ethnobotanicals that have attracted increasing attention due to a wide range of their pharmacological properties. In this study, cholinesterase inhibitors were obtained from branches of Abuta panurensis Eichler (Menispermaceae), an endemic species from the Amazonian rainforest. Five alkaloids were isolated, and their structure was elucidated by a combination of 1D and 2D 1H and 13C NMR spectroscopy, HPLC-MS, and high-resolution MS: Lindoldhamine isomer m/z 569.2674 (1), stepharine m/z 298.1461 (2), palmatine m/z 352.1616 (3), 5-N-methylmaytenine m/z 420.2669 (4) and the N-trans-feruloyltyramine m/z 314.1404 (5). The compounds 1, 3, and 5 were isolated from A. panurensis for the first time. Interaction of the above-mentioned alkaloids with acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes was investigated in silico by molecular docking and molecular dynamics. The molecules under investigation were able to bind effectively with the active sites of the AChE and BChE enzymes. The compounds 1-4 demonstrated in vitro an inhibitory effect on acetylcholinesterase with IC50 values in the range of 19.55 µM to 61.24 µM. The data obtained in silico corroborate the results of AChE enzyme inhibition.


Subject(s)
Alkaloids , Menispermaceae , Acetylcholinesterase/metabolism , Alkaloids/chemistry , Alkaloids/pharmacology , Butyrylcholinesterase/chemistry , Molecular Docking Simulation
5.
Molecules ; 26(7)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33916097

ABSTRACT

Depression and anxiety are major mental health problems in all parts of the world. These illnesses are associated with a number of risk factors, including oxidative stress. Psychotropic drugs of a chemical nature have demonstrated several side effects that elevated the impact of those illnesses. Faced with this situation, natural products appear to be a promising alternative. The aim of this study was to evaluate the anxiolytic and antidepressant effects of the Petroselinum sativum polyphenols in vivo, as well as its correlated antioxidant properties in vitro. Anxiolytic activity of the extract (50 and 100 mg/kg) was evaluated using the open field and the light-dark chamber tests, while the antidepressant activity was evaluated using the forced swimming test. The antioxidant activity of the extract was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical test and the FRAP (iron-reducing capacity) test. The phenolic extract showed very powerful anxiolytic and antidepressant-like effects, especially at a dose of 100 mg/kg, decreasing the depressive behavior in mice (decreased immobility time) and also the anxiolytic behavior (tendency for discovery in the center and illuminated areas) better even than those of paroxetine and bromazepam (classic drugs) concomitant with those results the extract also showed an important antioxidant capacity. These preliminary results suggest that Petroselinum sativum exhibits anxiolytic and antidepressant potential for use as a complement or independent phytomedicine to treat depression and anxiety.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Antioxidants/pharmacology , Petroselinum/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Animals , Anti-Anxiety Agents/chemistry , Antidepressive Agents/chemistry , Antioxidants/chemistry , Anxiety/drug therapy , Behavior, Animal/drug effects , Biphenyl Compounds/antagonists & inhibitors , Depression/drug therapy , Disease Models, Animal , Dose-Response Relationship, Drug , Maze Learning/drug effects , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Polyphenols/chemistry , Rats , Rats, Wistar
6.
Molecules ; 26(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530597

ABSTRACT

Caralluma europaea (Guss.) N.E.Br.: (C. europaea) is a wild medicinal plant belonging to the family Apocynaceae. It is commonly used in traditional medicines for treating several diseases. The present work aims to evaluate the anti-inflammatory, antibacterial, and antifungal potentials of C. europaea fractions including hydro ethanol (ET CE), n-butanol (But CE), and polyphenol (Poly CE). The chemical composition of hydroethanol, n-butanol, and polyphenol-rich fractions from C. europaea were determined using GC-MS after silylation. The anti-inflammatory effect of hydroethanol, n-butanol, and polyphenol-rich fractions was studied by carrageenan-induced paw edema. Antibacterial and antifungal activities of hydroethanol, n-butanol, and polyphenol-rich fractions against Gram-positive bacteria, Gram-negative bacteria, and yeasts were assessed using the disc diffusion and micro-dilution assays. The findings of the chemical characterization affirmed the presence of interesting bioactive compounds in C. europaea fractions. The polyphenol-rich fraction was the best inhibitor of edema by75.68% after 6 h of treatment. The hydroethanol fraction was the most active against both bacteria and yeasts. This study contributes to society as it provides potential bioactive compounds in C. europaea extract, which may help in fighting nosocomial antibiotic-resistant microbes.


Subject(s)
Anti-Infective Agents/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Apocynaceae/chemistry , Cross Infection/microbiology , Inflammation/drug therapy , Phytochemicals/administration & dosage , 1-Butanol/administration & dosage , 1-Butanol/isolation & purification , 1-Butanol/pharmacology , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/isolation & purification , Anti-Infective Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification , Anti-Inflammatory Agents/pharmacology , Antifungal Agents/administration & dosage , Antifungal Agents/isolation & purification , Antifungal Agents/pharmacology , Candida albicans/drug effects , Carrageenan/adverse effects , Cross Infection/drug therapy , Drug Resistance, Bacterial/drug effects , Drug Resistance, Fungal/drug effects , Female , Gas Chromatography-Mass Spectrometry , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inflammation/chemically induced , Male , Microbial Sensitivity Tests , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Polyphenols/administration & dosage , Polyphenols/isolation & purification , Polyphenols/pharmacology , Rats , Saccharomyces cerevisiae/drug effects
7.
Molecules ; 25(9)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370100

ABSTRACT

Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA). The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 µM) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Ellipticines/chemistry , Ellipticines/pharmacology , Immunologic Factors/chemistry , Immunologic Factors/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Cycle/drug effects , Cell Line, Tumor , Chemistry Techniques, Synthetic , Dose-Response Relationship, Drug , Ellipticines/chemical synthesis , Humans , Immunologic Factors/chemical synthesis , Immunomodulation/drug effects , Molecular Structure , Solubility , Water
8.
Molecules ; 25(21)2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33139638

ABSTRACT

BACKGROUND: Olea europea L. subsp. europaea var. sylvestris (Mill) Lehr (Oleaster) is a wild endemic olive tree indigenous to the Mediterranean region. Olea europea leaves represent a natural reservoir of bioactive molecules that can be used for therapeutic purposes. AIM OF THE STUDY: This work was conducted to study antidiabetic and antihyperglycemic activities of flavonoids from oleaster leaves using alloxan-induced diabetic mice. The mode of action of flavonoids against eight receptors that have a high impact on diabetes management and complication was also investigated using molecular docking. RESULTS: During 28 days of mice treatment with doses 25 and 50 mg/kg b.w, the studied flavonoids managed a severe diabetic state (<450 mg/dL), exhibiting a spectacular antidiabetic and antihyperglycemic activity, and improved mice health status compared to diabetic control. The in-silico mode of action of oleaster flavonoids revealed the inhibition of protein tyrosine phosphatase 1B (PTP1B), Dipeptidyl-peptidase 4 (DPP4), α-Amylase (AAM), α-Glucosidase inhibition, Aldose reductase (AldR), Glycogen phosphorylase (GP), and the activation of free fatty acid receptor 1 (FFAR1). CONCLUSION: The findings obtained in the present work indicate that the flavonoids from the oleaster may constitute a safe multi-target remedy to treat diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Flavonoids , Hypoglycemic Agents , Models, Biological , Olea/chemistry , Plant Leaves/chemistry , Animals , Computer Simulation , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Flavonoids/chemistry , Flavonoids/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice
9.
Molecules ; 25(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238392

ABSTRACT

BACKGROUND: Anacyclus pyrethrum (A. pyrethrum) is a wild species belonging to the family Asteraceae, which is used in traditional medicines. AIM OF THE STUDY: This work was undertaken to study the chemical composition, analgesic, anti-inflammatory, and wound healing properties of hydroalcoholic extracts of different parts (roots, seeds, leaves, and capitula) of A. pyrethrum. Material and Methods: The phytochemical analysis of the studied extracts was conducted by GC-MS. The analgesic activity was evaluated in mice using acetic acid and formaldehyde methods. The anti-inflammatory activity was tested using the inhibitory method of edema induced in rats. The healing activity of the hydroethanolic extracts was explored by excision and incision wound healing models in rats. RESULTS: The phytochemical analysis of the studied plant extracts affirmed the presence of interesting compounds, including some newly detected elements, such as sarcosine, N-(trifluoroacetyl)-butyl ester, levulinic acid, malonic acid, palmitic acid, morphinan-6-One, 4,5.alpha.-epoxy-3-hydroxy-17-methyl, 2,4-undecadiene-8,10-diyne-N-tyramide, and isovaleric acid. The extracts of different parts (roots, seeds, leaves, and capitula) exhibited promising anti-inflammatory, analgesic, and wound healing effects, with percentages of inhibition up to 98%, 94%, and 100%, respectively. CONCLUSION: This study might contribute towards the well-being of society as it provides evidence on the potential analgesic, anti-inflammatory, and wound healing properties of A. pyrethrum.


Subject(s)
Analgesics/pharmacology , Anti-Inflammatory Agents/pharmacology , Asteraceae/chemistry , Plant Extracts/pharmacology , Wound Healing/drug effects , Acetic Acid/analysis , Analgesics/administration & dosage , Analgesics/chemistry , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/chemistry , Edema/drug therapy , Gas Chromatography-Mass Spectrometry , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Roots/chemistry , Rats
10.
Molecules ; 22(6)2017 May 28.
Article in English | MEDLINE | ID: mdl-28555042

ABSTRACT

Garlic is a food and medicinal plant that has been used in folk medicine since ancient times for its beneficial health effects, which include protection against cancer. Crushed garlic cloves contain an array of small sulfur-rich compounds such as ajoene. Ajoene is able to interfere with biological processes and is cytotoxic to cancer cells in the low micromolar range. BisPMB is a synthetic ajoene analogue that has been shown in our laboratory to have superior cytotoxicity to ajoene. In the current study we have performed a DNA microarray analysis of bisPMB-treated WHCO1 oesophageal cancer cells to identify pathways and processes that are affected by bisPMB. The most significantly enriched biological pathways as assessed by gene ontology, KEGG and ingenuity pathway analysis were those involving protein processing in the endoplasmic reticulum (ER) and the unfolded protein response. In support of these pathways, bisPMB was found to inhibit global protein synthesis and lead to increased levels of ubiquitinated proteins. BisPMB also induced alternate splicing of the transcription factor XBP-1; increased the expression of the ER stress sensor GRP78 and induced expression of the ER stress marker CHOP/GADD153. CHOP expression was found to be central to the cytotoxicity of bisPMB as its silencing with siRNA rendered the cells resistant to bisPMB. The MAPK proteins, JNK and ERK1/2 were activated following bisPMB treatment. However JNK activation was not critical in the cytotoxicity of bisPMB, and ERK1/2 activation was found to play a pro-survival role. Overall the ajoene analogue bisPMB appears to induce cytotoxicity in WHCO1 cells by activating the unfolded protein response through CHOP/GADD153.


Subject(s)
Disulfides/pharmacology , Esophageal Neoplasms/metabolism , Transcription Factor CHOP/metabolism , Cell Line, Tumor , Disulfides/chemistry , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Humans , Sulfoxides , Unfolded Protein Response/drug effects
11.
Bioorg Med Chem Lett ; 24(12): 2631-4, 2014 Jun 15.
Article in English | MEDLINE | ID: mdl-24813729

ABSTRACT

Ellipticine has been shown previously to exhibit excellent in vitro antiplasmodial activity and in vivo antimalarial properties that are comparable to those of the control drug chloroquine in a mouse malaria model. Ellipticine derivatives and analogs exhibit antimalarial potential however only a few have been studied to date. Herein, ellipticine and a structural analog were isolated from Aspidosperma vargasii bark. A-ring brominated and nitrated ellipticine derivatives exhibit good in vitro inhibition of Plasmodium falciparum K1 and 3D7 strains. Several of the compounds were found not to be toxic to human fetal lung fibroblasts. 9-Nitroellipticine (IC50=0.55µM) exhibits greater antiplasmodial activity than ellipticine. These results are further evidence of the antimalarial potential of ellipticine derivatives.


Subject(s)
Antimalarials/pharmacology , Ellipticines/pharmacology , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemical synthesis , Antimalarials/chemistry , Aspidosperma/chemistry , Chloroquine/chemistry , Chloroquine/pharmacology , Disease Models, Animal , Ellipticines/chemical synthesis , Ellipticines/chemistry , Fibroblasts/drug effects , Humans , Mice , Molecular Structure , Plant Bark/chemistry
12.
Front Chem ; 12: 1402310, 2024.
Article in English | MEDLINE | ID: mdl-39027726

ABSTRACT

Introduction: The aim of this study was to evaluate the antioxidant, antimicrobial, and preservative efficacy of Thymus broussonetii Boiss. essential oil (EO) in a topically applied formulation using a challenge test. Methods: The essential oil was extracted from the aerial part of T. broussonetii using hydrodistillation, and the obtained EO was further analyzed by gas chromatography/mass spectrometry (GC/MS). The antioxidant effect of the EO was evaluated using three methods: the inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), ß-carotene-linoleic acid, and the ferric reducing antioxidant power (FRAP) methods. The antimicrobial activity and the minimum inhibitory concentration (MIC) of this EO were assayed by the disk-diffusion method and the broth microdilution method, respectively. The preservative efficacy of T. broussonetii EO was assayed at 1% and 2% (v/w) in a topical cream formulation using a challenge test against standard-specific microorganisms recommended by the European Pharmacopoeia. Furthermore, the identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, human casein kinase 1 alpha 1 (CSNK1A1), glycogen synthase kinase 3, Staphylococcus aureus nucleoside diphosphate kinase, Escherichia coli beta-ketoacyl-[acyl-carrier protein] synthase, Pseudomonas aeruginosa LasR ligand-binding domain, and sterol 14-alpha demethylase (CYP51) from Candida albicans. The ADME/toxicity was predicted by analyzing the absorption, distribution, metabolism, and excretion parameters. Results and discussion: chemical composition of the EO revealed the presence of thymol (63.09%), p-cymene (11%), and γ-terpinene (8.99%) as the major components. The antioxidant assays revealed that the essential oil exhibited strong antioxidant activity, as indicated by the minimum inhibitory concentration IC50 (IC50 = 210 ± 0.3 µg/mL for the DPPH assay, IC50 = 145 ± 0.1 µg/mL for the ß-carotene assay, and IC50 = 84 ± 0.21 µg/mL for the FRAP assay) when compared to quercetin and butylated hydroxytoluene (BHT) as controls. The investigated essential oil exhibited important antimicrobial activity against all the tested microorganisms, and the MICs of the EO against bacteria and fungi were 0.02%-1%. Moreover, the EO of T. broussonetii evaluated at 2% (v/w) in a cream formulation succeeded in satisfying the A criteria for preservation efficacy against S. aureus, E. coli, and Aspergillus brasiliensis but exhibited less efficacy against P. aeruginosa (1.78 log reduction in the number of CFU/g after 7 days of evaluation) and C. albicans (1.09 log reduction in the number of CFU/g after 14 days of evaluation) when compared to the synthetic preservative phenoxyethanol 1% (v/w). In silico results showed that the antimicrobial activity of T. broussonetii EO is mostly attributed to thymol, terpinen-4-ol, and aromadendrene, while the antioxidant activity is attributed to thymol. These results indicate that the EO of T. broussonetii possesses important antimicrobial and antioxidant properties and can, therefore, be used as a natural preservative ingredient in the cosmetic industry.

13.
Pharmaceutics ; 16(7)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39065571

ABSTRACT

American cutaneous leishmaniasis is a disease caused by protozoa of the genus Leishmania. Currently, meglumine antimoniate is the first-choice treatment for the disease. The limited efficacy and high toxicity of the drug results in the necessity to search for new active principles. Nanotechnology is gaining importance in the field, since it can provide better efficacy and lower toxicity of the drugs. The present study aimed to synthesize, characterize, and evaluate the in vitro leishmanicidal and antileukemic activity of bismuth nanoparticles (BiNPs). Promastigotes and amastigotes of L. (V.) guyanensis and L. (L.) amazonensis were exposed to BiNPs. The efficacy of the nanoparticles was determined by measurement of the parasite viability and the percentage of infected cells, while the cytotoxicity was characterized by the colorimetry. BiNPs did not induce cytotoxicity in murine peritoneal macrophages and showed better efficacy in inhibiting promastigotes (IC50 < 0.46 nM) and amastigotes of L. (L.) amazonensis. This is the first report on the leishmanicidal activity of Bi-based materials against L. (V.) guayanensis. BiNPs demonstrated significant cytotoxic activity against K562 and HL60 cells at all evaluated concentrations. While the nanoparticles also showed some cytotoxicity towards non-cancerous Vero cells, the effect was much lower compared to that on cancer cells. Treatment with BiNPs also had a significant effect on inhibiting and reducing colony formation in HL60 cells. These results indicate that bismuth nanoparticles have the potential for an inhibitory effect on the clonal expansion of cancer cells.

14.
Pharmaceutics ; 15(9)2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37765294

ABSTRACT

In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.

15.
Foods ; 11(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35010259

ABSTRACT

Nowadays, the combination of molecules influences their biological effects, and interesting outcomes can be obtained from different component interactions. Using a mixture design method, this research seeks to simulate the efficacy of essential oil combinations against various bacteria and forecast the ideal combination. The chemical compositions of Myrtus communis, Artemisia herba-alba and Thymus serpyllum essential oils were analyzed using CG/MS. Then, the combined antibacterial effects were evaluated by testing mixture design formulations using the microdilution bioassay. The main compounds detected for M. communis essential oil were myrtenyl acetate (33.67%), linalool (19.77%) and 1,8-cineole (10.65%). A. herba-alba had piperitone as a chemotype, representing 85%. By contrast, the T. serpyllum oil contained thymol (17.29%), γ-terpinene (18.31%) and p-cymene (36.15%). The antibacterial effect of the essential oils studied, and the optimum mixtures obtained were target strain-dependent. T. serpyllum alone ensured the optimal inhibition against S. aureus and E. coli, while a ternary mixture consisting of 17.1%, 39.6% and 43.1% of M. communis, A. herba-alba and T. serpyllum respectively, was associated with optimal inhibitory activity against B. subtilis. The outcome of this research supports the idea of the boosting effect of essential oil combinations toward better activities, giving better understanding of the usefulness of mixture designs for food, cosmetics, and pharmaceutical applications.

16.
Nutrients ; 14(23)2022 Nov 27.
Article in English | MEDLINE | ID: mdl-36501085

ABSTRACT

Natural products have offered a number of exciting approaches in cancer treatment over the years. In this study, we investigated the prophylactic and therapeutic effects of the polyphenol-enriched fraction extracted from Myrtus communis (PEMC) on acute and chronic leukemia. According to the UHPLC-MSn, the fraction is rich in flavonoids. Protective activity of the PEMC was assessed by evaluating the antioxidant, anti-inflammatory, wound healing, and hemolysis potential in a series of in vivo and in vitro assays, while the therapeutic approach consisted of the evaluation of cytotoxic activity of the PEMC against HL60 and K562 leukemia cell lines. Safety of the fraction was also evaluated on a non-cancerous Vero cell line and by an acute toxicity test performed in mice. The PEMC demonstrated a significant anti-inflammatory and healing potential. The activities found at the dose of 100 mg/kg were better than those observed using a reference drug. The PEMC demonstrated a significant antioxidant effect and a specific cytotoxicity towards HL60 (IC50 = 19.87 µM) and K562 (IC50 = 29.64 µM) cell lines being non-toxic to the Vero cell line. No hemolytic activity was observed in vitro and no toxicity effect was found in mice. Thus, the PEMC has a pharmacological potential as both preventive and therapeutic agent. However, further research is necessary to propose its mechanism of action.


Subject(s)
Leukemia , Myrtus , Mice , Animals , Antioxidants/pharmacology , Polyphenols/pharmacology , Plant Extracts/pharmacology , Plant Leaves , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Leukemia/drug therapy
17.
Plants (Basel) ; 11(14)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35890486

ABSTRACT

A wide range of biological properties and a potent therapeutic and prophylactic effect on chronic diseases are all present in Argania spinosa L. press cake. The aim of this research is to valorize the anticrystallization properties against calcium oxalate crystals of Argania spinosa L. press cake fractions and identify its bioactive components. Chemical species identification was performed using GC-MS analysis. The turbidimetric model was used to investigate crystallization inhibition in vitro. Infrared spectroscopy technique was used to characterize the synthesized crystals. Furthermore, both DPPH and FRAP methods were used to assess antioxidant activity. The results show that the fractions are equally important in crystallization inhibition percentages of calcium oxalate crystals. For saponin and polyphenol fractions, the inhibition percentages are in the orders of 83.49% and 82.83%, respectively. The results of the antioxidant activity by DPPH method show that the two fractions are equally important in the elimination of free radicals; the inhibition percentages were 77.87 ± 4.21 and 89.92 ± 1.39 for both polyphenols and saponins, respectively. FRAP method showed that the absorbance increases proportionally with concentration, and the absorbance are almost similar for both fractions and reach maximum values in the orders of 0.52 ± 0.07 and 0.42 ± 0.03, respectively, for saponins and polyphenols. These findings demonstrate that both fractions are rich in bioactive chemicals and have an anticrystallization capacity, allowing them to be employed for the curative and prophylactic effects against urolithiasis.

18.
J Nutr Biochem ; 88: 108520, 2021 02.
Article in English | MEDLINE | ID: mdl-33017607

ABSTRACT

Nowadays, synthetic chemical antidiabetic drugs, besides their therapeutic effects, present adverse effects that could be hard to handle over time. In the last decade, studies reported new alternative molecules with more health benefits and less adverse effects. The goal of this study is to optimize a new antidiabetic formulation using plant flavonoids: Catechin, Epicatechin, and Rutin. They are also a powerful antioxidant and anti-inflammatory molecules. A mixture design experiment will optimize their combination to obtain a new, safe multi-targets antidiabetic formulation making it a powerful combination for the management of diabetes and its complications. To study the variation of blood glucose level in response to the treatment over the time we performed an Oral Glucose Tolerance Test. The blood glucose level variations recorded as responses for the mixture design experiment. We used the molecules at a dose of 10 mg/kg. According to the software analysis, the prediction profiler showed us the optimum combination, and the result was a binary combination between Rutin and Epicatechin (25% and 75%, respectively). This combination prevented hyperglycemia and hypoglycemia, along with the best area under the curve, and after that, we validated it through a repeated oral administration on alloxan-induced diabetic mice for 28 d. Rutin, Catechin, and Epicatechin exhibit a potent antihyperglycemic activity, their synergistic combination validates a new formulation that could be a real candidate to conventional drugs.


Subject(s)
Catechin/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/pharmacology , Rutin/pharmacology , Administration, Oral , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Blood Glucose/analysis , Catechin/administration & dosage , Diabetes Mellitus, Experimental/metabolism , Drug Combinations , Female , Flavonoids/pharmacology , Glucose Tolerance Test/methods , Hyperglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Male , Mice , Rutin/administration & dosage
19.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34451911

ABSTRACT

We report the design and synthesis of a new diazepine derivative, 4-(4-methoxyphenyl)-2,3,4,5-tetrahydro-2,3-benzodiazepin-1-one (VBZ102), and the evaluation of its anxiolytic-like profile, memory impairment effect, and toxicity in Swiss mice. VBZ102 was evaluated for central nervous system effects in an open field, light-dark box, and novel object recognition tests under oral administration for acute and sub-acute treatment. We tested the VBZ102 toxicity in mice through a determination of LD50 values and examination of the biochemical and histopathological parameters. The VBZ102 induced an anxiolytic effect at different doses both in the light-dark box and open field tests. Unlike other benzodiazepines (e.g., bromazepam), a sedative effect was noted only after administration of the VBZ102 at 10.0 mg/kg.

20.
Nutrients ; 13(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34444919

ABSTRACT

Flaxseed is an oilseed (45-50% oil on a dry-weight basis) crop. Its oil has demonstrated multiple health benefits and industrial applications. The goal of this research was to evaluate the antidiabetic and anti-inflammatory potential of the free polyphenol fraction of flax (Linum usitatissimum L.) seeds (PLU), based on their use in traditional medicine. Mice with alloxan-induced diabetes were used to study the antidiabetic activity of PLU in vivo, with an oral administration of 25 and 50 mg/kg over 28 days. Measurements of body weight and fasting blood glucose (FBG) were carried out weekly, and biochemical parameters were evaluated. An oral glucose tolerance test was also performed. Inhibitory activities of PLU on α-amylase and α-glucosidase activities were evaluated in vitro. The anti-inflammatory was evaluated in vivo in Wistar rats using the paw edema induction Test by carrageenan, and in vitro using the hemolysis ratio test. PLU administration to diabetic mice during the study period improved their body weight and FBG levels remarkably. In vitro inhibitory activity of digestive enzymes indicated that they may be involved in the proposed mode of action of PLU extract. Qualitative results of PLU revealed the presence of 18 polyphenols. These findings support daily consumption of flaxseed for people with diabetes, and suggest that polyphenols in flaxseed may serve as dietary supplements or novel phytomedicines to treat diabetes and its complications.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diabetes Mellitus, Experimental/therapy , Flax/chemistry , Hypoglycemic Agents/pharmacology , Plant Oils/pharmacology , Seeds/chemistry , Animals , Blood Glucose/drug effects , Body Weight/drug effects , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/chemically induced , Dietary Supplements , Humans , Mice , Polyphenols/pharmacology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL