Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters

Publication year range
1.
J Infect Dis ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189818

ABSTRACT

BACKGROUND: Mycobacterium abscessus complex (MABC), an opportunistic nontuberculous mycobacteria (NTM), can lead to poor clinical outcomes in pulmonary infections. Conflicting data exist on person-to-person transmission of MABC within and across healthcare facilities. To investigate further, a comprehensive retrospective study across five healthcare institutions on the Island of Montréal was undertaken. METHODS: We analyzed the genomes of 221 MABC isolates obtained from 115 individuals (2010-2018) to identify possible links. Genetic similarity, defined as ≤25 single-nucleotide polymorphisms (SNPs), was investigated through a blinded epidemiological inquiry. RESULTS: Bioinformatics analyses identified 28 sequence types (STs), including globally observed dominant circulating clones (DCCs). Further analysis revealed 210 isolate pairs within the SNP threshold. Among these pairs, there was one possible lab contamination where isolates from different patients processed in the same lab differed by only 2 SNPs. There were 37 isolate pairs from patients who had provided specimens from the same hospital; however, epidemiological analysis found no evidence of healthcare-associated person-to-person transmission between these patients. Additionally, pan-genome analysis showed higher discriminatory power than core genome analysis for examining genomic similarity. CONCLUSIONS: Genomics alone is insufficient to establish MABC transmission, particularly considering the genetic similarity and wide distribution of DCCs, although pan-genome analysis has the potential to add further insight. Our findings indicate that MABC infections in Montréal are unlikely attributable to healthcare-associated person-to-person transmission.

2.
J Clin Microbiol ; 61(3): e0157822, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36815861

ABSTRACT

Universal access to drug susceptibility testing for newly diagnosed tuberculosis patients is recommended. Access to culture-based diagnostics remains limited, and targeted molecular assays are vulnerable to emerging resistance mutations. Improved protocols for direct-from-sputum Mycobacterium tuberculosis sequencing would accelerate access to comprehensive drug susceptibility testing and molecular typing. We assessed a thermo-protection buffer-based direct-from-sample M. tuberculosis whole-genome sequencing protocol. We prospectively analyzed 60 acid-fast bacilli smear-positive clinical sputum samples in India and Madagascar. A diversity of semiquantitative smear positivity-level samples were included. Sequencing was performed using Illumina and MinION (monoplex and multiplex) technologies. We measured the impact of bacterial inoculum and sequencing platforms on genomic read depth, drug susceptibility prediction performance, and typing accuracy. M. tuberculosis was identified by direct sputum sequencing in 45/51 samples using Illumina, 34/38 were identified using MinION-monoplex sequencing, and 20/24 were identified using MinION-multiplex sequencing. The fraction of M. tuberculosis reads from MinION sequencing was lower than from Illumina, but monoplexing grade 3+ samples on MinION produced higher read depth than Illumina (P < 0.05) and MinION multiplexing (P < 0.01). No significant differences in sensitivity and specificity of drug susceptibility predictions were seen across sequencing modalities or within each technology when stratified by smear grade. Illumina sequencing from sputum accurately identified 1/8 (rifampin) and 6/12 (isoniazid) resistant samples, compared to 2/3 (rifampin) and 3/6 (isoniazid) accurately identified with Nanopore monoplex. Lineage agreement levels between direct and culture-based sequencing were 85% (MinION-monoplex), 88% (Illumina), and 100% (MinION-multiplex). M. tuberculosis direct-from-sample whole-genome sequencing remains challenging. Improved and affordable sample treatment protocols are needed prior to clinical deployment.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Isoniazid , Rifampin , Microbial Sensitivity Tests , Sputum/microbiology , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Genomics , Tuberculosis, Multidrug-Resistant/microbiology
3.
J Biomed Inform ; 138: 104283, 2023 02.
Article in English | MEDLINE | ID: mdl-36632859

ABSTRACT

PURPOSE: Recent developments in the field of artificial intelligence and acoustics have made it possible to objectively monitor cough in clinical and ambulatory settings. We hypothesized that time patterns of objectively measured cough in COVID-19 patients could predict clinical prognosis and help rapidly identify patients at high risk of intubation or death. METHODS: One hundred and twenty-three patients hospitalized with COVID-19 were enrolled at University of Florida Health Shands and the Centre Hospitalier de l'Université de Montréal. Patients' cough was continuously monitored digitally along with clinical severity of disease until hospital discharge, intubation, or death. The natural history of cough in hospitalized COVID-19 disease was described and logistic models fitted on cough time patterns were used to predict clinical outcomes. RESULTS: In both cohorts, higher early coughing rates were associated with more favorable clinical outcomes. The transitional cough rate, or maximum cough per hour rate predicting unfavorable outcomes, was 3·40 and the AUC for cough frequency as a predictor of unfavorable outcomes was 0·761. The initial 6 h (0·792) and 24 h (0·719) post-enrolment observation periods confirmed this association and showed similar predictive value. INTERPRETATION: Digital cough monitoring could be used as a prognosis biomarker to predict unfavorable clinical outcomes in COVID-19 disease. With early sampling periods showing good predictive value, this digital biomarker could be combined with clinical and paraclinical evaluation and is well adapted for triaging patients in overwhelmed or resources-limited health programs.


Subject(s)
COVID-19 , Humans , Cough , Artificial Intelligence , Acoustics , Biomarkers
4.
BMC Public Health ; 23(1): 1511, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558982

ABSTRACT

BACKGROUND: Quality surveillance data used to build tuberculosis (TB) transmission models are frequently unavailable and may overlook community intrinsic dynamics that impact TB transmission. Social network analysis (SNA) generates data on hyperlocal social-demographic structures that contribute to disease transmission. METHODS: We collected social contact data in five villages and built SNA-informed village-specific stochastic TB transmission models in remote Madagascar. A name-generator approach was used to elicit individual contact networks. Recruitment included confirmed TB patients, followed by snowball sampling of named contacts. Egocentric network data were aggregated into village-level networks. Network- and individual-level characteristics determining contact formation and structure were identified by fitting an exponential random graph model (ERGM), which formed the basis of the contact structure and model dynamics. Models were calibrated and used to evaluate WHO-recommended interventions and community resiliency to foreign TB introduction. RESULTS: Inter- and intra-village SNA showed variable degrees of interconnectivity, with transitivity (individual clustering) values of 0.16, 0.29, and 0.43. Active case finding and treatment yielded 67%-79% reduction in active TB disease prevalence and a 75% reduction in TB mortality in all village networks. Following hypothetical TB elimination and without specific interventions, networks A and B showed resilience to both active and latent TB reintroduction, while Network C, the village network with the highest transitivity, lacked resiliency to reintroduction and generated a TB prevalence of 2% and a TB mortality rate of 7.3% after introduction of one new contagious infection post hypothetical elimination. CONCLUSION: In remote Madagascar, SNA-informed models suggest that WHO-recommended interventions reduce TB disease (active TB) prevalence and mortality while TB infection (latent TB) burden remains high. Communities' resiliency to TB introduction decreases as their interconnectivity increases. "Top down" population level TB models would most likely miss this difference between small communities. SNA bridges large-scale population-based and hyper focused community-level TB modeling.


Subject(s)
Latent Tuberculosis , Tuberculosis , Humans , Latent Tuberculosis/epidemiology , Madagascar/epidemiology , Social Network Analysis , Tuberculosis/epidemiology , Tuberculosis/prevention & control , Population Groups
5.
J Clin Microbiol ; 59(8): e0025921, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34076476

ABSTRACT

Aerococcus urinae is a urinary pathogen with well-described resistance to fluoroquinolones. This study aimed to validate the gradient diffusion (GD) method (Etest) on cation-adjusted Mueller-Hinton agar with 5% sheep blood for testing the susceptibilities of Aerococcus urinae to the antimicrobial agents ciprofloxacin and levofloxacin and to compare the Etest to the broth microdilution (BMD) method from CLSI document M45-A3. Agar dilution (AD), as recommended by EUCAST, was used as an alternative reference method to arbitrate discrepancies or address technical issues. Aerococcus urinae isolates from urinary specimens were prospectively collected between June 2016 and December 2017 from six hospitals in Quebec, Canada, and identifications were confirmed using Vitek MS with the IVD 3.0 database. Of the 207 isolates tested using BMD, 37 (17.9%) showed trailing and 19 (9.2%) showed insufficient growth; these were tested using AD. Also, 38 isolates (18.4%) for ciprofloxacin and 13 isolates (6.3%) for levofloxacin showed a lack of essential or categorical agreement between the Etest and BMD and were also tested by AD. By use of a combined reference method (BMD or AD), the susceptibility rates of Aerococcus urinae were 82.6% and 81.6% for ciprofloxacin and levofloxacin, respectively. Categorical agreement between GD and the combined reference methods was 95.2% for ciprofloxacin and 97.1% for levofloxacin, with no very major error identified. Major and minor error rates were 0.6% and 4.3% for ciprofloxacin and 1.2% and 1.9% for levofloxacin. Overall, antimicrobial susceptibility testing (AST) using the Etest on sheep blood agar showed good agreement with the reference methods and can be considered by clinical laboratories wishing to perform AST on Aerococcus urinae isolates.


Subject(s)
Anti-Bacterial Agents , Fluoroquinolones , Aerococcus , Animals , Anti-Bacterial Agents/pharmacology , Canada , Disk Diffusion Antimicrobial Tests , Fluoroquinolones/pharmacology , Microbial Sensitivity Tests , Quebec , Sheep
6.
BMC Med ; 18(1): 173, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32600414

ABSTRACT

BACKGROUND: In Madagascar, the multidrug-resistant tuberculosis (MDR-TB) surveillance programme was launched in late 2012 wherein previously treated TB cases and symptomatic MDR-TB contacts (hereafter called presumptive MDR-TB cases) undergo drug susceptibility testing. This retrospective review had per aim to provide an update on the national MDR-TB epidemiology, assess and enhance programmatic performance and assess Madagascar's MDR-TB cascade of care. METHODS: For 2012-2017, national TB control programme notification, clinical management data and reference laboratory data were gathered. The development and coverage of the surveillance programme, the MDR-TB epidemiology and programmatic performance indicators were assessed using descriptive, logistic and spatial statistical analyses. Data for 2017 was further used to map Madagascar's TB and MDR-TB cascade of care. RESULTS: The geographical coverage and diagnostic and referral capacities of the MDR-TB surveillance programme were gradually expanded whereas regional variations persist with regard to coverage, referral rates and sample referral delays. Overall, the rate of MDR-TB among presumptive MDR-TB cases remained relatively stable, ranging between 3.9% in 2013 and 4.4% in 2017. Most MDR-TB patients were lost in the second gap of the cascade pertaining to MDR-TB cases reaching diagnostic centres but failing to be accurately diagnosed (59.0%). This poor success in diagnosis of MDR-TB is due to both the current use of low-sensitivity smear microscopy as a first-line diagnostic assay for TB and the limited access to any form of drug susceptibility testing. Presumptive MDR-TB patients' sample referral took a mean delay of 28 days before testing. Seventy-five percent of diagnosed MDR-TB patients were appropriately initiated on treatment, and 33% reached long-term recurrence-free survival. CONCLUSIONS: An expansion of the coverage and strengthening of MDR-TB diagnostic and management capacities are indicated across all regions of Madagascar. With current limitations, the surveillance programme data is likely to underestimate the true MDR-TB burden in the country and an updated national MDR-TB prevalence survey is warranted. In absence of multiple drivers of an MDR-TB epidemic, including high MDR-TB rates, high HIV infection rates and inter-country migration, Madagascar is in a favourable starting position for MDR-TB control and elimination.


Subject(s)
Antitubercular Agents/therapeutic use , Tuberculosis, Multidrug-Resistant/drug therapy , Antitubercular Agents/pharmacology , Female , History, 21st Century , Humans , Madagascar , Male , Prevalence , Retrospective Studies , Time Factors
7.
J Med Virol ; 90(2): 334-337, 2018 02.
Article in English | MEDLINE | ID: mdl-28971486

ABSTRACT

This study compared the Altona RealStar™ VZV Kit 1.0 real time quantitative VZV PCR with in-house qualitative conventional VZV PCR on cerebrospinal fluid, mucocutaneous, and other uncommon clinical specimens. Overall, positive and negative agreement percentages were respectively 97.9% (95%CI: 93.8-99.6), 100.0% (95%CI: 93.1-100.0), and 96.3% (95%CI: 89.4-99.2) while Cohen's kappa statistic value was 0.96 (95%CI: 0.91-1.00). RealStar™ VZV quantitative PCR assay reported average quantitative viral loads of 4.4 × 105 and 1.1 × 107 copies/mL in cerebrospinal fluid and cutaneous specimens, respectively (P < 0.01). RealStar™ VZV PCR assay showed excellent agreement with in house conventional assay for various clinical specimens.


Subject(s)
Herpesvirus 3, Human/isolation & purification , Molecular Diagnostic Techniques/methods , Polymerase Chain Reaction/methods , Varicella Zoster Virus Infection/diagnosis , Humans , Prospective Studies
8.
Can J Neurol Sci ; 45(4): 466-469, 2018 07.
Article in English | MEDLINE | ID: mdl-30056824

ABSTRACT

JC virus is the etiological agent of progressive multifocal leukoencephalopathy, a white matter demyelinating disease that mostly affects immunocompromised patients. JC virus can also infect neurons and meningeal cells and cause encephalitis, meningitis and granule cell neuronopathy. We report a patient with JC virus granule cell neuronopathy, without concomitant progressive multifocal leukoencephalopathy, presenting as inaugural acquired immune deficiency syndrome-related illness. This patient's human immunodeficiency virus infection remained undiagnosed for several months after neurological symptoms onset. We review JC virus pathophysiology, clinical manifestations, treatment and prognosis, and emphasize the importance of considering human immunodeficiency virus infection and related opportunistic infections in the differential diagnosis of new-onset isolated cerebellar disease.


Subject(s)
Cerebellar Diseases , JC Virus/pathogenicity , Polyomavirus Infections/complications , Cerebellar Diseases/diagnostic imaging , Cerebellar Diseases/etiology , Cerebellar Diseases/pathology , Cerebellar Diseases/virology , Female , Humans , Magnetic Resonance Imaging , Middle Aged , Polyomavirus Infections/diagnostic imaging
9.
PLOS Glob Public Health ; 4(7): e0003530, 2024.
Article in English | MEDLINE | ID: mdl-39058715

ABSTRACT

Prolonged exposure to fine particulate matter (PM2.5) is a known risk to respiratory health, causing chronic lung impairment. Yet, the immediate, acute effects of PM2.5 exposure on respiratory symptoms, such as cough, are less understood. This pilot study aims to investigate this relationship using objective PM2.5 and cough monitors. Fifteen participants from rural Madagascar were followed for three days, equipped with an RTI Enhanced Children's MicroPEM PM2.5 sensor and a smartphone with the ResApp Cough Counting Software application. Univariable Generalized Estimating Equation (GEE) models were applied to measure the association between hourly PM2.5 exposure and cough counts. Peaks in both PM2.5 concentration and cough frequency were observed during the day. A 10-fold increase in hourly PM2.5 concentration corresponded to a 39% increase in same-hour cough frequency (incidence rate ratio (IRR) = 1.40; 95% CI: 1.12, 1.74). The strength of this association decreased with a one-hour lag between PM2.5 exposure and cough frequency (IRR = 1.21; 95% CI: 1.01, 1.44) and was not significant with a two-hour lag (IRR = 0.93; 95% CI: 0.71, 1.23). This study demonstrates the feasibility of objective PM2.5 and cough monitoring in remote settings. An association between hourly PM2.5 exposure and cough frequency was detected, suggesting that PM2.5 exposure may have immediate effects on respiratory health. Further investigation is necessary in larger studies to substantiate these findings and understand the broader implications.

10.
Diagn Microbiol Infect Dis ; 109(2): 116249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38537504

ABSTRACT

Targeted Next Generation Sequencing (tNGS) and Whole Genome Sequencing (WGS) are increasingly used for genotypic drug susceptibility testing (gDST) of Mycobacterium tuberculosis. Thirty-two multi-drugs resistant and 40 drug susceptible isolates from Madagascar were tested with Deeplex® Myc-TB and WGS using the Mykrobe analysis pipeline. Sixty-four of 72 (89 %) yielded concordant categorical gDST results for drugs tested by both assays. Mykrobe didn't detect pncA K96T, pncA Q141P, pncA H51P, pncA H82R, rrs C517T and rpsL K43R mutations, which were identified as minority variants in corresponding isolates by tNGS. One discrepancy (rrs C517T) was associated with insufficient sequencing depth on WGS. Deeplex® Myc-TB didn't detect inhA G-154A which isn't covered by the assay's amplification targets. Despite those targets being included in the Deeplex® Myc-TB assay, a pncA T47A and a deletion in gid were not identified in one isolate respectively. The evaluated WGS and tNGS gDST assays show high but imperfect concordance.


Subject(s)
Antitubercular Agents , Genotype , High-Throughput Nucleotide Sequencing , Microbial Sensitivity Tests , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/pharmacology , Microbial Sensitivity Tests/methods , Humans , High-Throughput Nucleotide Sequencing/methods , Tuberculosis, Multidrug-Resistant/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Madagascar , Genome, Bacterial/genetics , Mutation , Bacterial Proteins/genetics , Genotyping Techniques/methods
11.
Sci Data ; 11(1): 1149, 2024 Oct 18.
Article in English | MEDLINE | ID: mdl-39424635

ABSTRACT

Cough is a common and commonly ignored symptom of lung disease. Cough is often perceived as difficult to quantify, frequently self-limiting, and non-specific. However, cough has a central role in the clinical detection of many lung diseases including tuberculosis (TB), which remains the leading infectious disease killer worldwide. TB screening currently relies on self-reported cough which fails to meet the World Health Organization (WHO) accuracy targets for a TB triage test. Artificial intelligence (AI) models based on cough sound have been developed for several respiratory conditions, with limited work being done in TB. To support the development of an accurate, point-of-care cough-based triage tool for TB, we have compiled a large multi-country database of cough sounds from individuals being evaluated for TB. The dataset includes more than 700,000 cough sounds from 2,143 individuals with detailed demographic, clinical and microbiologic diagnostic information. We aim to empower researchers in the development of cough sound analysis models to improve TB diagnosis, where innovative approaches are critically needed to end this long-standing pandemic.


Subject(s)
Cough , Triage , Cough/diagnosis , Humans , Tuberculosis/diagnosis , Artificial Intelligence
12.
Viruses ; 16(3)2024 02 23.
Article in English | MEDLINE | ID: mdl-38543708

ABSTRACT

Throughout the SARS-CoV-2 pandemic, several variants of concern (VOCs) have been identified, many of which share recurrent mutations in the spike glycoprotein's receptor-binding domain (RBD). This region coincides with known epitopes and can therefore have an impact on immune escape. Protracted infections in immunosuppressed patients have been hypothesized to lead to an enrichment of such mutations and therefore drive evolution towards VOCs. Here, we present the case of an immunosuppressed patient that developed distinct populations with immune escape mutations throughout the course of their infection. Notably, by investigating the co-occurrence of substitutions on individual sequencing reads in the RBD, we found quasispecies harboring mutations that confer resistance to known monoclonal antibodies (mAbs) such as S:E484K and S:E484A. These mutations were acquired without the patient being treated with mAbs nor convalescent sera and without them developing a detectable immune response to the virus. We also provide additional evidence for a viral reservoir based on intra-host phylogenetics, which led to a viral substrain that evolved elsewhere in the patient's body, colonizing their upper respiratory tract (URT). The presence of SARS-CoV-2 viral reservoirs can shed light on protracted infections interspersed with periods where the virus is undetectable, and potential explanations for long-COVID cases.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Post-Acute COVID-19 Syndrome , COVID-19 Serotherapy , Immunocompromised Host , Antibodies, Monoclonal , Mutation , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Viral , Antibodies, Neutralizing
13.
Can Commun Dis Rep ; 49(2-3): 76-80, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-38090723

ABSTRACT

Background: Tecovirimat (TCV, TPOXX®) is an orthopox-specific antiviral drug indicated for the treatment of smallpox. There is also a mechanistic basis for its use in mpox infection. However, its approval was based on animal studies, and its efficacy and side-effect profile in human patients with disease is unknown. Methods: During the 2022 international mpox epidemic, clinicians in Canada accessed TCV from the Public Health Agency of Canada's National Emergency Strategic Stockpile for severe cases of mpox disease. We describe the use of TCV in nine adults with severe mpox virus infection in Montréal, Canada. Results: Five patients were treated for severe and potentially life-threatening head and neck symptoms, while four were treated for genitourinary or anorectal disease. Two-thirds of patients were also treated for suspected bacterial superinfection. All patients recovered (median time to resolution of severe symptoms: nine days) without relapse or hospital readmission. No patients reported adverse events attributable to TCV and no patients stopped their treatment early. Conclusion: Our experience suggests that TCV is well tolerated and may accelerate recovery in severe cases. These preliminary, observational data may also be explained by concomitant treatment for superinfection and are limited by the absence of a control group. Controlled, clinical trials should be conducted to clarify the attributable benefit of TCV in severe mpox infection.

14.
BMJ Open ; 13(4): e066651, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037623

ABSTRACT

OBJECTIVES: To clarify perceived benefits, barriers and facilitators of Mycobacterium tuberculosis next-generation sequencing implementation in Madagascar and Canada, towards informing implementation of this diagnostic technology in public health agencies and clinical settings in and beyond these settings. DESIGN: This qualitative study involved conducting semistructured interviews with key stakeholders engaged with next-generation sequencing implementation in Madagascar and Canada. Team-based descriptive analysis supported by Nvivo V.12.0 was used to identify key themes. SETTING: The study was conducted with participants involved at the clinical, diagnostic and surveillance levels of tuberculosis (TB) management from Madagascar and Canada. PARTICIPANTS: Eighteen participants were interviewed (nine Madagascar and nine Canada) and included individuals purposively sampled based on involvement with TB surveillance, laboratory diagnosis and clinical management. RESULTS: The following five themes emerged in the analysis of Malagasy and Canadian interviews: (1) heterogeneity in experience with established TB diagnostics, (2) variable understanding of new sequencing-based diagnostics potential; (3) further evidence as being key to expand adoption; (4) ethical arguments and concerns; (5) operational and system-level considerations. CONCLUSION: There persists important lack of familiarity with TB next-generation sequencing (TB NGS) applications among stakeholders in Canada and Madagascar. This translates into skepticism on the evidence underlying its use and its true potential value added within global public health systems. If deployed, TB NGS testing should be integrated with clinical and surveillance programmes. Although this is perceived as a priority, leadership and funding responsibilities for this integration to happen remains unclear to clinical, laboratory and public health stakeholders.


Subject(s)
Tuberculosis , Humans , Developed Countries , Canada , Tuberculosis/diagnosis , Qualitative Research , High-Throughput Nucleotide Sequencing
15.
Lancet Microbe ; 4(2): e84-e92, 2023 02.
Article in English | MEDLINE | ID: mdl-36549315

ABSTRACT

BACKGROUND: Mycobacterium tuberculosis whole-genome sequencing (WGS) has been widely used for genotypic drug susceptibility testing (DST) and outbreak investigation. For both applications, Illumina technology is used by most public health laboratories; however, Nanopore technology developed by Oxford Nanopore Technologies has not been thoroughly evaluated. The aim of this study was to determine whether Nanopore sequencing data can provide equivalent information to Illumina for transmission clustering and genotypic DST for M tuberculosis. METHODS: In this genomic analysis, we analysed 151 M tuberculosis isolates from Madagascar, South Africa, and England, which were collected between 2011 and 2018, using phenotypic DST and matched Illumina and Nanopore data. Illumina sequencing was done with the MiSeq, HiSeq 2500, or NextSeq500 platforms and Nanopore sequencing was done on the MinION or GridION platforms. Using highly reliable PacBio sequencing assemblies and pairwise distance correlation between Nanopore and Illumina data, we optimise Nanopore variant filters for detecting single-nucleotide polymorphisms (SNPs; using BCFtools software). We then used those SNPs to compare transmission clusters identified by Nanopore with the currently used UK Health Security Agency Illumina pipeline (COMPASS). We compared Illumina and Nanopore WGS-based DST predictions using the Mykrobe software and mutation catalogue. FINDINGS: The Nanopore BCFtools pipeline identified SNPs with a median precision of 99·3% (IQR 99·1-99·6) and recall of 90·2% (88·1-94·2) compared with a precision of 99·6% (99·4-99·7) and recall of 91·9% (87·6-98·6) using the Illumina COMPASS pipeline. Using a threshold of 12 SNPs for putative transmission clusters, Illumina identified 98 isolates as unrelated and 53 as belonging to 19 distinct clusters (size range 2-7). Nanopore reproduced 15 out of 19 clusters perfectly; two clusters were merged into one cluster, one cluster had a single sample missing, and one cluster had an additional sample adjoined. Illumina-based clusters were also closely replicated using a five SNP threshold and clustering accuracy was maintained using mixed Illumina and Nanopore datasets. Genotyping resistance variants with Nanopore was highly concordant with Illumina, having zero discordant SNPs across more than 3000 SNPs and four insertions or deletions (indels), across 60 000 indels. INTERPRETATION: Illumina and Nanopore technologies can be used independently or together by public health laboratories performing M tuberculosis genotypic DST and outbreak investigations. As a result, clinical and public health institutions making decisions on which sequencing technology to adopt for tuberculosis can base the choice on cost (which varies by country), batching, and turnaround time. FUNDING: Academy for Medical Sciences, Oxford Wellcome Institutional Strategic Support Fund, and the Swiss South Africa Joint Research Award (Swiss National Science Foundation and South African National Research Foundation).


Subject(s)
Mycobacterium tuberculosis , Nanopore Sequencing , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Microbial Sensitivity Tests , Sequence Analysis, DNA , Genomics , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Disease Outbreaks
16.
Article in English | MEDLINE | ID: mdl-36960087

ABSTRACT

Objectives: We evaluated the added value of infection control-guided, on demand, and locally performed severe acute respiratory coronavirus virus 2 (SARS-CoV-2) genomic sequencing to support outbreak investigation and control in acute-care settings. Design and setting: This 18-month prospective molecular epidemiology study was conducted at a tertiary-care hospital in Montreal, Canada. When nosocomial transmission was suspected by local infection control, viral genomic sequencing was performed locally for all putative outbreak cases. Molecular and conventional epidemiology data were correlated on a just-in-time basis to improve understanding of coronavirus disease 2019 (COVID-19) transmission and reinforce or adapt control measures. Results: Between April 2020 and October 2021, 6 outbreaks including 59 nosocomial infections (per the epidemiological definition) were investigated. Genomic data supported 7 distinct transmission clusters involving 6 patients and 26 healthcare workers. We identified multiple distinct modes of transmission, which led to reinforcement and adaptation of infection control measures. Molecular epidemiology data also refuted (n = 14) suspected transmission events in favor of community acquired but institutionally clustered cases. Conclusion: SARS-CoV-2 genomic sequencing can refute or strengthen transmission hypotheses from conventional nosocomial epidemiological investigations, and guide implementation of setting-specific control strategies. Our study represents a template for prospective, on site, outbreak-focused SARS-CoV-2 sequencing. This approach may become increasingly relevant in a COVID-19 endemic state where systematic sequencing within centralized surveillance programs is not available. Trial registration: clinicaltrials.gov identifier: NCT05411562.

17.
Lancet Infect Dis ; 23(12): e547-e557, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37652066

ABSTRACT

Care cascades represent the proportion of people reaching milestones in care for a disease and are widely used to track progress towards global targets for HIV and other diseases. Despite recent progress in estimating care cascades for tuberculosis (TB) disease, they have not been routinely applied at national and subnational levels, representing a lost opportunity for public health impact. As researchers who have estimated TB care cascades in high-incidence countries (India, Madagascar, Nigeria, Peru, South Africa, and Zambia), we describe the utility of care cascades and identify measurement challenges, including the lack of population-based disease burden data and electronic data capture, the under-reporting of people with TB navigating fragmented and privatised health systems, the heterogeneity of TB tests, and the lack of post-treatment follow-up. We outline an agenda for rectifying these gaps and argue that improving care cascade measurement is crucial to enhancing people-centred care and achieving the End TB goals.


Subject(s)
Tuberculosis , Humans , Tuberculosis/therapy , Cost of Illness , South Africa , India , Madagascar
18.
BMJ Open Respir Res ; 10(1)2023 11.
Article in English | MEDLINE | ID: mdl-37945314

ABSTRACT

INTRODUCTION: Despite its high prevalence and significance, there is still no widely available method to quantify cough. In order to demonstrate agreement with the current gold standard of human annotation, emerging automated techniques require a robust, reproducible approach to annotation. We describe the extent to which a human annotator of cough sounds (a) agrees with herself (intralabeller or intrarater agreement) and (b) agrees with other independent labellers (interlabeller or inter-rater agreement); we go on to describe significant sex differences in cough sound length and epochs size. MATERIALS AND METHODS: 24 participants wore an audiorecording smartwatch to capture 6-24 hours of continuous audio. A randomly selected sample of the whole audio was labelled twice by an expert annotator and a third time by six trained annotators. We collected 400 hours of audio and analysed 40 hours. The cough counts as well as cough seconds (any 1 s of time containing at least one cough) from different annotators were compared and summary statistics from linear and Bland-Altman analyses were used to quantify intraobserver and interobserver agreement. RESULTS: There was excellent intralabeller (less than two disagreements per hour monitored, Pearson's correlation 0.98) and interlabeller agreement (Pearson's correlation 0.96), using cough seconds as the unit of analysis decreased annotator discrepancies by 50% in comparison to coughs. Within this data set, it was observed that the length of cough sounds and epoch size (number of coughs per bout or attach) differed between women and men. CONCLUSION: Given the decreased interobserver variability in annotation when using cough seconds (vs just coughs) we propose their use for manually annotating cough when assessing of the performance of automatic cough monitoring systems. The differences in cough sound length and epochs size may have important implications for equality in the development of cough monitoring tools. TRIAL REGISTRATION NUMBER: NCT05042063.


Subject(s)
Cough , Sex Characteristics , Humans , Male , Female , Cough/diagnosis , Monitoring, Physiologic , Observer Variation , Prevalence
19.
ASAIO J ; 68(3): e56-e58, 2022 03 01.
Article in English | MEDLINE | ID: mdl-33788798

ABSTRACT

The increasing use of extracorporeal membrane oxygenation (ECMO) in critical care introduces new challenges with medication dosing. Voriconazole, a commonly used antifungal and the first-choice agent for the treatment of invasive aspergillosis, is a poorly water-soluble and highly protein-bound drug. Significant sequestration in ECMO circuits can be expected; however, no specific dosing recommendations are available. We report on the therapeutic drug monitoring and clinical evolution of a patient treated with voriconazole for invasive pulmonary aspergillosis while receiving ECMO therapy. Voriconazole trough levels were persistently low (<1 µg/mL) after initiation of ECMO despite additional loading doses and dose increases. Voriconazole dose had to be increased to 6.5 mg/kg three times daily to obtain therapeutic trough levels. The inability to achieve therapeutic levels of voriconazole for a prolonged period (a minimum of 9 days) while undergoing ECMO therapy is believed to have been a significant contributing factor in the patient's fatal outcome. Therapeutic trough levels of voriconazole cannot be guaranteed with standard dosing in patients undergoing ECMO and much higher doses may be necessary. Empirical use of higher doses and/or combination therapy may be reasonable and frequent therapeutic drug monitoring is mandatory.


Subject(s)
Aspergillosis , Extracorporeal Membrane Oxygenation , Invasive Pulmonary Aspergillosis , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Aspergillosis/microbiology , Humans , Invasive Pulmonary Aspergillosis/drug therapy , Voriconazole/therapeutic use
20.
Commun Med (Lond) ; 2: 83, 2022.
Article in English | MEDLINE | ID: mdl-35814294

ABSTRACT

Cough assessment is central to the clinical management of respiratory diseases, including tuberculosis (TB), but strategies to objectively and unobtrusively measure cough are lacking. Acoustic epidemiology is an emerging field that uses technology to detect cough sounds and analyze cough patterns to improve health outcomes among people with respiratory conditions linked to cough. This field is increasingly exploring the potential of artificial intelligence (AI) for more advanced applications, such as analyzing cough sounds as a biomarker for disease screening. While much of the data are preliminary, objective cough assessment could potentially transform disease control programs, including TB, and support individual patient management. Here, we present an overview of recent advances in this field and describe how cough assessment, if validated, could support public health programs at various stages of the TB care cascade.

SELECTION OF CITATIONS
SEARCH DETAIL